The fixed mirror solar concentrator (FMSC) possesses a geometry that can produce thermal energy in medium temperature range. Due to its static reflector, the FMSC has several advantages when compared to other designs, such as being one of the best adapted for integration onto building roofs. An optical ray-tracing analysis of its geometry was presented in a previous paper (Pujol Nadal and Martínez Moll, 2012, “Optical Analysis of the Fixed Mirror Solar Concentrator by Forward Ray-Tracing Procedure,” Trans ASME J. Solar Energy Eng., 134(3), pp. 031009-1-14). The optical results were obtained in function of three design parameters: the number of mirrors N, the ratio of focal length and reflector width F/W, and the intercept factor γ (in order to represent different receiver widths). In this communication, the integrated thermal output of the same parameter combinations has been determined in order to find optimal values of the design parameters at a working temperature of 200 °C. The results were obtained for three different climates and two orientations (North-South and East-West). The results show that FMSC can produce heat at 200 °C with an annual thermal efficiency of 39, 44, and 48%, dependent of the location considered (Munich, Palma de Mallorca, and Cairo). The best FMSC geometries in function of the design parameters are exhibited for medium range applications.

References

1.
Russell
,
J. L.
,
DePlomb
,
E. P.
, and
Bansal
,
R. K.
,
1974
, “
Principles of the Fixed Mirror Solar Concentrator
,” 2nd ed.,
General Atomic Co.
,
San Diego, CA
, Report No. GA-A12903.
2.
Pujol Nadal
,
R.
, and
Martínez Moll
,
V.
,
2012
, “
Optical Analysis of the Fixed Mirror Solar Concentrator by Forward Ray-Tracing Procedure
,”
ASME J. Solar Energy Eng.
,
134
(
3
), p.
031009
.10.1115/1.4006575
3.
IEA
,
2012
, “
Technology Roadmap. Solar Heating and Cooling
,” OECD/IEA, Paris,
France
http://www.iea.org/publications/freepublications/publication/2012_SolarHeatingCooling_Roadmap_FINAL_WEB.pdf
4.
Morin
,
G.
,
Dersch
,
J.
, and
Platzer
,
W.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Solar Energy
,
86
(
1
), pp.
1
12
.10.1016/j.solener.2011.06.020
5.
Giostri
,
A.
,
Binotti
,
M.
, and
Silva
,
P.
,
2013
, “
Comparison of Two Linear Collectors in Solar Thermal Plants: Parabolic Trough Versus Fresnel
,”
ASME J. Solar Energy Eng.
,
135
(
1
),
p. 011001
.10.1115/1.4006792
6.
Duffie
,
J. A.
, and
Beckman
,
W.
,
1991
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York.
7.
Buie
,
D.
,
Dey
,
C. J.
, and
Bosi
,
S.
,
2003
, “
The Effective Size of the Solar Cone for Solar Concentrating Systems
,”
Solar Energy
,
74
(
5
), pp.
417
427
.10.1016/S0038-092X(03)00156-7
8.
Johnston
,
G.
,
1995
, “
On the Analysis of Surface Error Distributions on Concentrated Solar Collectors
,”
ASME J. Solar Energy Eng.
,
117
(
4
), pp.
294
296
.10.1115/1.2847843
9.
TÜV
,
2008
, “
Qualification of a Solar Collector According to DIN EN 12975-2:2006
,” TÜV Report No 21208197. Tech. rep., TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, http://www.nt-solartechnik.de/de/zertifikat/ertragsnachweis.pdf
10.
Winter
,
C.
,
Sizmann
,
R. L.
, and
Vant-Hull
,
L. L.
,
1991
,
Solar Power Plants: Fundamentals
,
Technology
,
Systems
,
Economics
,
Springer
,
New York
.
11.
Rohsenow
,
W. M.
, and
Hartnett
,
J. P.
,
1973
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
12.
Almeco
,
2012
,
Almeco-TiNOX GmbH
, available at: http://www.almecosolar.com/Brochure/tinox_energy_new_en.pdf
13.
TRNSYS
.
2004A Transient System Simulation ProgramVersion 16University of Wisconsin
.
14.
U.S. Department of Energy, 2013, “EnergyPlus Energy Simulation Software,” http://apps1.eere.energy.gov/buildings/energyplus/
15.
Pujol Nadal
,
R.
, and
Martínez Moll
,
V.
,
2013
, “
Optical Analysis of a Curved-Slats Fixed-Mirror Solar Concentrator by a Forward Ray-Tracing Procedure
,”
Appl. Opt.
,
52
(
30
), pp.
7389
7398
.10.1364/AO.52.007389
You do not currently have access to this content.