System-level simulation of a molten-salt thermocline tank is undertaken in response to year-long historical weather data and corresponding plant control. Such a simulation is enabled by combining a finite-volume model of the tank that includes a sufficiently faithful representation at low computation cost with a system-level power tower plant model. Annual plant performance of a 100 MWe molten-salt power tower plant is optimized as a function of the thermocline tank size and the plant solar multiple (SM). The effectiveness of the thermocline tank in storing and supplying hot molten salt to the power plant is found to exceed 99% over a year of operation, independent of tank size. The electrical output of the plant is characterized by its capacity factor (CF) over the year, which increases with solar multiple and thermocline tank size albeit with diminishing returns. The economic performance of the plant is characterized with a levelized cost of electricity (LCOE) metric. A previous study conducted by the authors applied a simplified cost metric for plant performance. The current study applies a more comprehensive financial approach and observes a minimum cost of 12.2 ¢/kWhe with a solar multiple of 3 and a thermocline tank storage capacity of 16 h. While the thermocline tank concept is viable and economically feasible, additional plant improvements beyond those pertaining to storage are necessary to achieve grid parity with fossil fuels.

References

References
1.
Faas
,
S. E.
,
Thorne
,
L. R.
,
Fuchs
,
E. A.
, and
Gilbertsen
,
N. D.
,
1986
, “
10 MWe Solar Thermal Central Receiver Plant: Thermal Storage Subsystem Evaluation—Final Report
,” Report No. SAND86-8212, Sandia National Laboratories, Albuquerque, NM.
2.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
153
159
.10.1115/1.1464123
3.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
, pp.
974
985
.10.1016/j.solener.2010.03.007
4.
Flueckiger
,
S. M.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2012
, “
Thermomechanical Simulation of the Solar One Thermocline Storage Tank
,”
ASME J. Sol. Energy Eng.
,
134
, p.
041014
.10.1115/1.4007665
5.
Van Lew
,
J. T.
,
Li
,
P.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
, p.
021003
.10.1115/1.4003685
6.
Kolb
,
G. J.
,
2011
, “
Evaluation of Annual Performance of 2-Tank and Thermocline Thermal Storage Systems for Trough Plants
,”
ASME J. Sol. Energy Eng.
,
133
, p.
031023
.10.1115/1.4004239
7.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
,
Garimella
,
S. V.
, and
Pacheco
,
J. E.
,
2014
, “
System-Level Simulation of a Solar Power Tower Plant With Thermocline Thermal Energy Storage
,”
Appl. Energ.
,
113
, pp.
86
96
.10.1016/j.apenergy.2013.07.004
8.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
, and
Garimella
,
S. V.
,
2013
, “
Simulation of a Concentrating Solar Power Plant With Molten-Salt Thermocline Storage for Optimized Annual Performance
,”
Proceedings of the ASME 2013 7th International Conference on Energy Sustainability
,
Minneapolis, MN, July 14-19
.
9.
Nissen
,
D. A.
,
1982
, “
Thermophysical Properties of the Equimolar Mixture NaNO3-KNO3 From 300 to 600 °C
,”
J. Chem. Eng. Data
,
27
, pp.
269
273
.10.1021/je00029a012
10.
Cote
,
J.
, and
Konrad
,
J.-M.
,
2005
, “
Thermal Conductivity of Base-Coarse Materials
,”
Can. Geotech. J.
,
42
, pp.
61
78
.10.1139/t04-081
11.
Flueckiger
,
S. M.
, and
Garimella
,
S. V.
,
2012
, “
Second-Law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines
,”
Sol. Energy
,
86
, pp.
1621
1631
.10.1016/j.solener.2012.02.028
12.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon Beach
,
New York
.
13.
Gonzo
,
E. E.
,
2002
, “
Estimating Correlations for the Effective Thermal Conductivity of Granular Materials
,”
Chem. Eng. J.
,
90
, pp.
299
302
.10.1016/S1385-8947(02)00121-3
14.
Stoddard
,
M. C.
,
Faas
,
S. E.
,
Chiang
,
C. J.
, and
Dirks
,
J. A.
,
1987
, “
Solergy
,” Report No. SAND86-8060, Sandia National Laboratories, Albuquerque, NM.
15.
Kistler
,
B. L.
,
1986
, “
A User's Manual for DELSOL3
,” Report No. SAND86-8018, Sandia National Laboratories, Albuquerque, NM.
16.
Pacheco
,
J. E.
,
2002
, “
Final Test and Evaluation Results From the Solar Two Project
,” Report No. SAND2002-0120, Sandia National Laboratories, Albuquerque, NM.
17.
Kolb
,
G. J.
,
2011
, “
An Evaluation of Possible Next-Generation High-Temperature Molten-Salt Power Towers
,” Report No. SAND2011-9320, Sandia National Laboratories, Albuquerque, NM.
18.
National Renewable Energy Laboratory
,
2013
, “
Simple Levelized Cost of Energy (LCOE) Calculator
,” http://www.nrel.gov/analysis/
19.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,” Report No. SAND2011-2419, Sandia National Laboratories, Albuquerque, NM.
20.
National Renewable Energy Laboratory
,
2012
, “
System Advisor Model, Ver. 2012.11.30
,” https://sam.nrel.gov/
21.
Electric Power Research Institute
,
2010
, “
Solar Thermal Storage Systems: Preliminary Design Study
,” 1019581, EPRI, Palo Alto, CA.
22.
U.S. Department of Energy
,
2011
, “
SunShot Concentrating Solar Power (CSP) R&D
,” Report No. DE-FOA-0000595, DOE.
You do not currently have access to this content.