Research on phase change materials (PCM) as a potential technology to reduce peak loads and heating, ventilation and air conditioning (HVAC) energy use in buildings has been conducted for several decades, resulting in a great deal of literature on PCM properties, temperature, and peak reduction potential. However, there are few building energy simulation programs that include PCM modeling features, and very few of these have been validated. Additionally, there is no previous research that indicates the level of accuracy when modeling PCMs from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation. The impact of accurately modeling realistic, nonlinear enthalpy profiles for PCMs versus simpler profiles is analyzed based on peak load reduction and energy savings using the conduction finite difference (CondFD) algorithm in EnergyPlus. The PCM and CondFD models used in this study have been previously validated after intensive verification and validation done at the National Renewable Energy Laboratory. Overall, the results of this study show annual energy savings are not very sensitive to the linearization of enthalpy curve. However, hourly analysis shows that if simpler linear profiles are used, users should try to specify a melting range covering roughly 80% of the latent heat; otherwise, hourly results can differ by up to 20%.

References

References
1.
Peippo
,
K.
,
Kauranen
,
P.
, and
Lund
,
P. D.
,
1991
, “
Multicomponent PCM Wall Optimized for Passive Solar Heating
,”
Energy Build.
,
17
(
4
), pp.
259
270
.10.1016/0378-7788(91)90009-R
2.
Stovall
,
T. K.
, and
Tomlinson
,
J. J
,
1995
, “
What Are the Potential Benefits of Including Latent Storage in Common Wallboard?
,”
ASME J. Sol. Energy Eng.
,
117
(
4
) pp.
318
325
.
10.1115/1.2847868
3.
Kosny
,
J.
,
Shrestha
,
S.
,
Stovall
,
T.
, and
Yarbrough
,
D.
,
2010
, “
Theoretical and Experimental Thermal Performance Analysis of Complex Thermal Storage Membrane Containing Bio-Base Phase Change Material (PCM)
,”
Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference
, Clearwater Beach, FL, December 5–9, p.
11
.
4.
Zhang
,
Y. P.
,
Lin
,
K. P.
,
Yang
,
R.
,
Di
,
H. F.
, and
Jiang
,
Y.
,
2006
, “
Preparation, Thermal Performance and Application of Shape-Stabilized PCM in Energy Efficient Buildings
,”
Energy Build.
,
38
(
10
), pp.
1262
1269
.10.1016/j.enbuild.2006.02.009
5.
Tabares-Velasco
,
P. C.
,
Christensen
,
C.
, and
Bianchi
,
M.
,
2012
, “
Simulated Peak Reduction and Energy Savings of Residential Building Envelope With Phase Change Materials
,”
ASHRAE Trans.
,
118
(
2
), pp.
90
97
.
6.
Khudhair
,
A. M.
, and
Farid
,
M. M.
,
2004
, “
A Review on Energy Conservation in Building Applications With Thermal Storage by Latent Heat Using Phase Change Materials
,”
Energy Convers. Manage.
,
45
(
2
), pp.
263
275
.10.1016/S0196-8904(03)00131-6
7.
Tyagi
,
V. V.
, and
Buddhi
,
D.
,
2007
, “
PCM Thermal Storage in Buildings: A State of Art
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1146
1166
.10.1016/j.rser.2005.10.002
8.
Heim
,
D.
, and
Clarke
,
J. A.
,
2004
, “
Numerical Modeling and Thermal Simulation of PCM-Gypsum Composites With ESP-r
,”
Energy Build.
,
36
(
8
), pp.
795
805
.10.1016/j.enbuild.2004.01.004
9.
Heim
,
D.
,
2010
, “
Isothermal Storage of Solar Energy in Building Construction
,”
Renewable Energy
,
35
(
4
), pp.
788
796
.10.1016/j.renene.2009.09.005
10.
Schossig
,
P.
,
Henning
,
H. M.
,
Gschwander
,
S.
, and
Haussmann
,
T.
,
2005
, “
Micro-Encapsulated Phase-Change Materials Integrated Into Construction Materials
,”
Sol. Energy Mater. Sol. Cells
,
89
(
2–3
), pp.
297
306
.10.1016/j.solmat.2005.01.017
11.
Ibáñez
,
M.
,
Lázaro
,
A.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2005
, “
An Approach to the Simulation of PCMs in Building Applications Using TRNSYS
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1796
1807
.10.1016/j.applthermaleng.2004.11.001
12.
Koschenz
,
M.
, and
Lehmann
,
B.
,
2004
, “
Development of a Thermally Activated Ceiling Panel With PCM for Application in Lightweight and Retrofitted Buildings
,”
Energy Build.
,
36
(
6
), pp.
567
578
.10.1016/j.enbuild.2004.01.029
13.
Tabares-Velasco
,
P. C.
,
Christensen
,
C.
, and
Bianchi
,
M.
,
2012
, “
Verification and Validation of EnergyPlus Phase Change Material Model for Opaque Wall Assemblies
,”
Build. Environ.
,
54
, pp.
186
196
.10.1016/j.buildenv.2012.02.019
14.
Tabares-Velasco
,
P. C.
, and
Griffith
,
B.
,
2012
, “
Diagnostic Test Cases for Verifying Surface Heat Transfer Algorithms and Boundary Conditions in Building Energy Simulation Programs
,”
J. Build. Perform. Simul.
,
5
(
5
), pp.
329
346
.10.1080/19401493.2011.595501
15.
Voller
, V
. R.
,
1997
, “
An Overview of Numerical Methods for Solving Phase Change Problems
,”
Advances in Numerical Heat Transfer
, Vol. 1,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Taylor & Francis
,
London
, p.
422
.
16.
Farid
,
M. M.
,
Hamad
,
F. A.
, and
Abu-Arabi.
M.
,
1998
, “
Melting and Solidification in Multi-Dimensional Geometry and Presence of More Than One Interface
,”
Energy Conversion and Management
,
39
(
8
), pp.
809
818
.10.1016/S0196-8904(97)00038-1
17.
Pedersen
,
C. O.
,
1972
, “
Enthalpy Formulation of Conduction Heat Transfer Problems Involving Latent Heat
,”
Simulation
,
18
(
2
), pp.
57
59
.10.1177/003754977201800205
18.
Castellón
,
C.
,
Günther
,
E.
,
Mehling
,
H.
,
Hiebler
,
S.
, and
Cabeza
,
L. F.
,
2008
, “
Determination of the Enthalpy of PCM as a Function of Temperature Using a Heat-Flux DSC—A Study of Different Measurement Procedures and Their Accuracy
,”
Int. J. Energy Res.
,
32
(
13
), pp.
1258
1265
.10.1002/er.1443
19.
Günther
,
E.
,
Hiebler
,
S.
,
Mehling
,
H.
, and
Redlich
,
R.
,
2009
, “
Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods
,”
Int. J. Thermophys.
,
30
(
4
), pp.
1257
1269
.10.1007/s10765-009-0641-z
20.
EnergyPlus
,
2012
, “
EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations
,”
Ernest Orlando Lawrence Berkeley National Laboratory
, Berkeley, CA, p.
1130
.
21.
Shrestha
,
S.
,
Miller
,
W.
,
Stovall
,
T.
,
Desjarlais
,
A.
,
Childs
,
K.
,
Porter
,
W.
,
Bhandari
,
M.
, and
Coley
,
S.
,
2011
, “
Modeling PCM-Enhanced Insulation System and Benchmarking EnergyPlus Against Controlled Data Field
,” 12th Conference of International Building Performance Simulation Association, Sydney, November 14–16, pp.
800
807
.
22.
Childs
,
K.
, and
Stovall
,
T.
,
2012
, “
Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Technical Report No. ORNL/TM-2012/6.10.2172/1038077
23.
Kosny
,
J.
,
Shrestha
,
S.
,
Yarbrough
,
D.
,
Childs
,
P.
,
Miller
,
W.
,
Bianchi
,
M.
,
Smith
,
J.
,
Fellinger
,
T.
,
Kossecka
,
E.
, and
Lee
,
E.
,
2010
, “
Theoretical and Experimental Thermal Performance Analysis of Building Shell Components Containing Blown Fiberglass Insulation Enhanced With Phase-Change Materials (PCM)
,”
Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference
, Clearwater Beach, FL, December 5–9, p.
13
.
24.
Tabares-Velasco
,
P. C.
,
Christensen
,
C.
,
Bianchi
,
M.
, and
Booten
,
C.
,
2012
, “
Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. TP-5500-55792, p. 55.
You do not currently have access to this content.