In this paper, energy and exergy analyses of a new solar-driven triple-staged refrigeration cycle using Duratherm 600 oil as the heat transfer fluid are performed. The proposed cycle is an integration of absorption refrigeration cycle (ARC), ejector (EJE) refrigeration cycle (ERC), and ejector expansion Joule–Thomson (EJT) refrigeration cryogenic cycles which could produce refrigeration output of different magnitude at different temperature simultaneously. Both exergy destruction and losses in each component and hence in the overall system are determined to identify the causes and locations of the thermodynamic imperfection. Several design parameters, including the hot oil outlet temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ERC and EJT cycle are also tested to evaluate their effects on energy and exergy performance. It is observed that largest contribution to cycle irreversibility comes from the central receiver and heliostat field with the heat recovery vapor generator (HRVG), condenser, and ejector of ERC itself also contributing considerably. The exergy efficiency of the solar-driven triple-staged refrigeration cycle is 4% which is much lower than its energy efficiency of 10%, respectively. The results clearly reveal that thermodynamic investigations based on energy analysis alone cannot legitimately be complete unless the exergy concept becomes a part of the analysis.

References

References
1.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
, pp.
231
295
.10.1016/j.pecs.2004.02.001
2.
Priasawas
,
W.
, and
Lundqvist
,
P.
,
2004
, “
An Exergy Analysis of a Solar Driven Ejector Refrigeration System
,”
Sol. Energy
,
76
, pp.
369
379
.10.1016/j.solener.2003.11.004
3.
Hernandez
,
J. I.
,
Best
,
R.
,
Dorantes
,
R. J.
, and
Estrada
,
C. A.
,
2005
, “
Study of a Solar Booster Assisted Ejector Refrigeration System With R134a
,”
ASME J. Sol. Energy Eng.
,
127
, pp.
53
59
.10.1115/1.1771683
4.
Alexis
,
G. K.
, and
Katsanis
,
J. S.
,
2004
, “
Performance Characteristics of a Methanol Ejector Refrigeration Unit
,”
Energy Convers. Manage.
,
45
, pp.
2729
2744
.10.1016/j.enconman.2003.12.012
5.
Varga
,
S.
,
Oliveira
,
A. C.
, and
Diaconu
,
B.
,
2009
, “
Analysis of a Solar Assisted Ejector Cooling System for Air Conditioning
,”
Int. J. Low Carbon Technol.
,
4
, pp.
2
8
.10.1093/ijlct/ctn001
6.
Pierres
,
N. L.
,
Stitou
,
D.
, and
Mazet
,
N.
,
2007
, “
New Deep-Freezing Process Using Renewable Low-Grade Heat: From the Conceptual Design to Experimental Results
,”
Energy
,
32
(
4
), pp.
600
608
.10.1016/j.energy.2006.07.024
7.
Dincer
,
I.
,
Edin
,
M.
, and
Ture
,
I. E.
,
1996
, “
Investigation of Thermal Performance of a Solar Powered Absorption Refrigeration System
,”
Energy Convers. Manage.
,
37
, pp.
51
58
.10.1016/0196-8904(95)00019-A
8.
Das
,
K.
, and
Mani
,
A.
,
1996
, “
Comparative Study of Cycle Performance for a Two Stage Intermittent Solar Refrigerator Working With R22-Absorbent Combinations
,”
Energy Convers. Manage.
,
37
, pp.
87
93
.10.1016/0196-8904(95)00015-6
9.
Yang
,
R.
, and
Wang
,
P. L.
,
2001
, “
A Simulation Study of Performance Evaluation of Single-Glazed and Double-Glazed Collectors for an Open Cycle Absorption Solar Cooling System
,”
Sol. Energy
,
71
, pp.
263
268
.10.1016/S0038-092X(01)00047-0
10.
Atmaca
,
I.
, and
Yigit
,
A.
,
2003
, “
Simulation of Solar Powered Absorption Cooling System
,”
Renewable Energy
,
28
, pp.
1277
1293
.10.1016/S0960-1481(02)00252-5
11.
Ziegler
,
F.
,
Kahn
,
R.
,
Summerer
,
F.
, and
Alefeld
,
G.
,
1993
, “
Multieffect Absorption Chillers
,”
Int. J. Refrigeration
,
16
(
5
), pp.
301
311
.10.1016/0140-7007(93)90002-P
12.
Sozen
,
A.
,
Ozalp
,
M.
, and
Arcaklioglu
,
E.
,
2004
, “
Prospects for Utilization of Solar Driven Ejector-Absorption Cooling System in Turkey
,”
Appl. Therm. Eng.
,
24
, pp.
1019
1035
.10.1016/j.applthermaleng.2003.11.011
13.
Wang
,
J.
,
Chen
,
G.
, and
Jiang
,
H.
,
1998
, “
Study on a Solar Driven Ejection Absorption Refrigeration Cycle
,”
Int. J. Energy Res.
,
22
, pp.
733
739
.10.1002/(SICI)1099-114X(19980625)22:8<733::AID-ER398>3.0.CO;2-K
14.
Fan
,
Y.
,
Luo
,
L.
, and
Souyri
,
B.
,
2007
, “
Review of Solar Sorption Refrigeration Technologies: Development and Applications
,”
Renewable Sustainable Energy Rev.
,
11
, pp.
1758
1775
.10.1016/j.rser.2006.01.007
15.
Naer
,
V.
, and
Rozhentsev
,
A.
,
2002
, “
Application of Hydrocarbon Mixtures in Small Refrigerating and Cryogenic Machines
,”
Int. J. Refrigeration
,
25
, pp.
836
847
.10.1016/S0140-7007(01)00092-5
16.
Yu
,
J.
,
Tia
,
G.
, and
Xu
,
Z.
,
2009
, “
Exergy Analysis of Joule Thomson Cryogenic Refrigeration Cycle With an Ejector
,”
Energy
,
34
(
11
), pp.
1864
1869
.10.1016/j.energy.2009.07.034
17.
Rashidi
,
M. M.
,
Beg
,
O. A.
, and
Habibzabeh
,
A.
,
2010
, “
First and Second Law Analysis of an Ejector Expansion Joule Thomson Cryogenic Refrigeration Cycle
,”
Int. J. Energy Res.
,
36
(
2
), pp.
231
240
.10.1002/er.1800
18.
Gong
,
M.
,
Wu
,
J.
,
Cheng
,
Q.
,
Sun
,
Z.
,
Liu
,
J.
, and
Hu
,
Q.
,
2012
, “
Development of a −186 °C Cryogenic Preservation Chamber Based on a Dual Mixed-Gases Joule-Thomson Refrigeration Cycle
,”
Appl. Therm. Eng.
,
36
, pp.
188
192
.10.1016/j.applthermaleng.2011.12.029
19.
Keenan
,
H.
,
Neumann
,
E. P.
, and
Lustwerk
,
F.
,
1950
, “
An Investigation of Ejector Design by Analysis and Experiment
,”
ASME J. Appl. Mech.
,
72
, pp.
299
309
.
20.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petronko
,
V. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrigeration
,
22
, pp.
354
364
.10.1016/S0140-7007(99)00004-3
21.
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2003
, “
Model Development and Numerical Procedure for Detailed Ejector Analysis and Design
,”
Appl. Therm. Eng.
,
23
, pp.
2337
2351
.10.1016/S1359-4311(03)00208-4
22.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Exergy Analysis, Parametric Analysis and Optimization for a Novel Combined Power and Ejector Refrigeration Cycle
,”
Appl. Therm. Eng.
,
29
, pp.
1983
1990
.10.1016/j.applthermaleng.2008.09.016
23.
NIST Standard Reference Database 23
,
1998
, “
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures REFPROP
,” Version 6.01.
24.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
, pp.
545
565
.10.1002/er.804
25.
Xu
,
C.
,
Wang
,
Z.
,
Li
,
X.
, and
Sun
,
F.
,
2011
, “
Energy and Exergy Analysis of Solar Power Tower Plants
,”
Appl. Therm. Eng.
,
31
, pp.
3904
3913
.10.1016/j.applthermaleng.2011.07.038
26.
Chua
,
H. T.
,
Toh
,
H. K.
,
Malek
,
A.
,
Ng
,
K. C.
, and
Srinivasan
,
K.
,
2000
, “
Improved Thermodynamic Property Fields of LiBr-H2O Solutions
,”
Int. J. Refrigeration
,
23
, pp.
412
429
.10.1016/S0140-7007(99)00076-6
You do not currently have access to this content.