Vibration is one of the most common loading modes during handling and transport of solar silicon wafers and has a great influence on the breakage rate. In order to control the breakage rate during handling and facilitate the optimization of the processing steps, it is important to understand the factors which influence the natural frequency of thin silicon wafers. In this study, we applied nonlinear finite element method to investigate the correlation of natural frequency of thin solar silicon wafer with material microstructures (grain size and grain orientation), thickness variation and crack geometry (position and size). It has been found that the natural frequency for anisotropic single crystal silicon wafer is a strong function of material orientation. Less than 10% thickness variation will have a negligible effect on natural frequency. It is also found out that cracks smaller than 20 mm have no dominant effect on the first five natural frequency modes anywhere in the silicon wafer.

References

1.
Moller
,
H. J.
,
Funke
,
M.
,
Rinio
,
C.
, and
Scholz
,
S.
,
2005
, “
Multi-Crystalline Silicon for Solar Cells
,”
Thin Solid Films
,
487
, pp.
179
187
.10.1016/j.tsf.2005.01.061
2.
Dhere
,
N. G.
, and
Toward
,
G. W.
,
2007
, “
Production of CIGS Within the Next Decade
,”
Sol. Energy Mater. Sol. Cells
,
91
, pp.
1376
1382
.10.1016/j.solmat.2007.04.003
3.
Dominguez
,
P. S.
, and
Fernandez
,
J. M.
,
2005
, “
Introduction of Thinner Mono-Crystalline Silicon Wafers in an Industrial Cell-Manufacturing Facility
,”
Proceedings 20th European Photo Voltaic Solar Energy Conference
,
Barcelona, Spain, June 6–10
.
4.
Wang
,
P. W.
,
2006
, “
Industrial Challenges for Thin Wafer Manufacturing
,”
Proceedings 4th World Conference on Photovoltaic Energy Conversion
,
Waikoloa, HI
, May 7–12, pp.
1179
1182
.10.1109/WCPEC.2006.279391
5.
Sopori
,
B.
,
Sheldon
,
P.
, and
Rupnowski
,
P.
,
2006
, “
Wafer Breakage Mechanism(s) and a Method for Screening Problem Wafers
,’’
Proceedings 16th Workshop on Crystalline Silicon Solar Cells and Modules
,
Denver, CO, August 6–9
, pp.
129
138
.
6.
Leissa
,
A. W.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
, pp.
257
293
.10.1016/S0022-460X(73)80371-2
7.
Palardy
,
R. F.
, and
Palazotto
,
A. N.
,
1990
, “
Buckling and Vibration of Composite Plates Using the Levy Method
,”
Compos. Struct.
,
14
, pp.
61
68
.10.1016/0263-8223(90)90059-N
8.
Chow
,
S. T.
,
Liew
,
K. M.
, and
Lam
,
K. Y.
,
1992
, “
Transverse Vibration of Symmetrically Laminated Rectangular Composite Plates
,”
Compos. Struct.
,
20
, pp.
213
226
.10.1016/0263-8223(92)90027-A
9.
Bert
,
C. W.
,
Wang
,
X. W.
, and
Striz
,
A. G.
,
1993
, “
Differential Quadrature for Static and Free Vibration Analysis of Anisotropic Plates
,”
Int. J. Solids Struct.
,
30
, pp.
1737
1744
.10.1016/0020-7683(93)90230-5
10.
Akhras
,
G.
,
Cheung
,
M. S.
, and
Li
,
W.
,
1993
, “
Static and Vibration Analysis of Anisotropic Composites by Finite Strip Method
,”
Int. J. Solids Struct.
,
30
, pp.
3129
3137
.10.1016/0020-7683(93)90143-U
11.
Farsa
,
J.
,
Kukreti
,
A. R.
, and
Bert
,
C. W.
,
1993
, “
Fundamental Frequency Analysis of Laminated Rectangular Plates by Differential Quardrature Method
,”
Int. J. Numer. Methods Eng.
,
36
, pp.
2341
2356
.10.1002/nme.1620361403
12.
Shupikov
,
A. N.
, and
Ugrimov
,
S. V.
,
1999
, “
Vibrations of Multiplayer Plates Under the Effect of Impulse Loads, Three Dimensional Theory
,”
Int. J. Solids Struct.
,
36
, pp.
3391
3402
.10.1016/S0020-7683(98)00156-5
13.
Wen
,
P. H.
,
Aliabadi
,
M. H.
, and
Young
,
A.
,
2000
, “
A Boundary Element Method for Dynamic Plate Bending Problems
,”
Int. J. Solids Struct.
,
37
, pp.
5177
5188
.10.1016/S0020-7683(99)00187-0
14.
Chattopadhyay
,
A.
, and
Radu
,
A. G.
,
2000
, “
Dynamic Instability of Composite Laminates Using a Higher Order Theory
,”
Comput. Struct.
,
77
, pp.
453
460
.10.1016/S0045-7949(00)00005-5
15.
Cheung
,
Y. K.
, and
Zhou
,
D.
,
2001
, “
Vibration Analysis of Symmetrically Laminated Rectangular Plates With Wafers
,”
Comput. Struct.
,
79
, pp.
33
41
.10.1016/S0045-7949(00)00108-5
16.
Civalek
,
Ö.
,
2004
, “
Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for Buckling Analysis of Thin Isotropic Plates and Elastic Columns
,”
Eng. Struct.
,
26
(
2
), pp.
171
186
.10.1016/j.engstruct.2003.09.005
17.
Yeh
,
Y. L.
,
Jang
M. J.
, and
Wang
,
C. C.
,
2006
, “
Analysing the Free Vibrations of a Plate Using Finite Difference and Differential Transformation Method
,”
Appl. Math. Comput.
,
178
, pp.
493
501
.10.1016/j.amc.2005.11.068
18.
Huang
,
Y.
,
1988
, “
A General Analytical Solution for Elastic Vibration of Rectangular Thin Plates
,”
Appl. Math. Mech. (English edition)
,
9
, pp.
1057
1065
.10.1007/BF02454509
19.
Huang
,
Y.
, and
Zhang
,
X. J.
,
2002
, “
General Analytical Solution of Transverse Vibration for Orthotropic Rectangular Thin Plates
,”
J. Mar. Sci. Appl.
,
1
, pp.
78
82
.10.1007/BF02935845
20.
Huang
,
Y.
,
Lei
,
Y.
, and
Shen
,
H.
,
2006
, “
Free Vibration of Anisotropic Rectangular Plates by General Analytical Method
,”
Appl. Math. Mech. (English edition)
,
27
(
4
), pp.
461
467
.10.1007/s10483-006-0405-y
21.
Gürses
,
M.
,
Civalek
Ö.
,
Korkmaz
,
A. K.
, and
Ersoy
,
H.
,
2009
, “
Free Vibration Analysis of Symmetric Laminated Skew Plates by Discrete Singular Convolution Technique Based on First-Order Shear Deformation Theory
,”
Int. J. Numer. Methods Eng.
,
79
, pp.
290
313
.10.1002/nme.2553
22.
Seçgin
,
A.
, and
Sarıgül
,
A. S.
,
2008
, “
Free Vibration Analysis of Symmetrically Laminated Thin Composite Plates by Using Discrete Singular Convolution (DSC) Approach: Algorithm and Verification
,”
J. Sound Vib.
,
315
, pp.
197
211
.10.1016/j.jsv.2008.01.061
23.
Qin
,
Z.
, and
Xinwei
,
W.
,
2011
, “
Free Vibration Analysis of Thin Isotropic and Anisotropic Rectangular Plates by the Discrete Singular Convolution Algorithm
,”
Int. J. Numer. Methods Eng.
,
86
, pp.
782
800
.10.1002/nme.3073
24.
Chao
,
C. C.
,
Chleboski
,
R.
,
Henderson
,
E. J.
,
Holmes
,
C. K.
, and
Kalejs
,
J. P.
,
1991
, “
Fracture Behaviour of Silicon Cut With High Power Laser
,”
Proc. Material Research Society Symposium
, MRS, Pittsburgh,
226
, pp.
363
368
.10.1557/PROC-226-363
25.
Claudia
,
F.
,
Eckehard
,
K.
,
Meinhard
,
K.
, and
Joachim
,
M. H.
,
2004
, “
Biaxial Fracture Test of Silicon Wafers
,”
Adv. Eng. Mater.
,
6
(
7
), pp.
594
598
.10.1002/adem.200400406
26.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
, pp.
153
156
.10.1063/1.1713863
27.
Ravi
,
K. V.
,
1977
, “
The Growth of EFG Silicon Ribbons
,”
J. Cryst. Growth
,
39
, pp.
1
16
.10.1016/0022-0248(77)90151-8
28.
Leissa
,
A. W.
, and
Narita
,
Y.
,
1989
, “
Vibration Studies for Simply Supported Symmetrically Laminated Rectangular Plates
,”
Compos. Struct.
,
12
, pp.
113
132
.10.1016/0263-8223(89)90085-8
You do not currently have access to this content.