In this paper, we review the main advances made by our research group on the heat transfer performance of complex flow architectures embedded in a conducting solid. The immediate applications of this work include the design of ground-coupled heat pumps, seasonal thermal energy storage systems, and district heating and cooling systems. Various configurations are considered: U-shaped ducts with varying spacing between the parallel portions of the U, serpentines with three elbows, and trees with T-shaped and Y-shaped bifurcations. In each case, the volume ratio of fluid to soil is fixed. We found the critical geometric features that allow the heat transfer density of the stream-solid configuration to be the highest. In the case of U-tubes and serpentines, the best spacing between parallel portions is discovered, whereas the vascular designs morph into bifurcations and angles of connection that provide progressively greater heat transfer rate per unit volume. We show that the flow of heat into or out of a solid volume must have an S-shaped history curve that is entirely deterministic. This constructal-design principle unites a wide variety of previously disconnected S-curve phenomena (ground heat storage and retrieval, population growth, cancer, chemical reactions, contaminants, languages, news, information, innovations, technologies, economic activity).

References

References
1.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
2.
Sanner
,
B.
,
Karytsas
,
C.
,
Mendrinos
,
D.
, and
Rybach
,
L.
,
2003
, “
Current Status of Ground Source Heat Pumps and Underground Thermal Energy Storage in Europe
,”
Geothermics
,
32
, pp.
579
588
.10.1016/S0375-6505(03)00060-9
3.
Abbaspour-Fard
,
M. H.
,
Gholami
,
A.
, and
Khojastehpour
,
M.
,
2011
, “
Evaluation of an Earth-to-Air Heat Exchanger for the North-East of Iran With Semi-Arid Climate
,”
Int. J. Green Energy
,
8
(
4
), pp.
499
510
.10.1080/15435075.2011.576289
4.
Lee
,
K. S.
,
2011
, “
Modeling on the Performance of Standing Column Wells During Continuous Operation Under Regional Groundwater Flow
,”
Int. J. Green Energy
,
8
(
4
), pp.
474
485
.10.1080/15435075.2011.576290
5.
Cui
,
P.
,
Yang
,
H.
, and
Fang
,
Z.
,
2008
, “
Numerical Analysis and Experimental Validation of Heat Transfer in Ground Heat Exchangers in Alternative Operation Modes
,”
Energy Build.
,
40
, pp.
1060
1066
.10.1016/j.enbuild.2007.10.005
6.
Esen
,
H.
,
Inalli
,
M.
,
Esen
,
M.
, and
Pihtili
,
K.
,
2007
, “
Energy and Exergy Analysis of a Ground-Coupled Heat Pump System With Two Horizontal Ground Heat Exchangers
,”
Build. Environ.
,
42
, pp.
3606
3615
.10.1016/j.buildenv.2006.10.014
7.
Darkwa
,
J.
,
Kokogiannakis
,
G.
,
Magadzire
,
C. L.
, and
Yuan
,
K.
,
2011
, “
Theoretical and Practical Evaluation of an Earth-Tube (E-Tube) Ventilation System
,”
Energy Build.
,
43
, pp.
728
736
.10.1016/j.enbuild.2010.11.018
8.
Akpinar
,
E. K.
, and
Hepbasli
,
A.
,
2007
, “A Comparative Study on Exergetic Assessment of Two Ground-Source (Geothermal) Heat Pump Systems for Residential Applications, Buildings and Environment,”
Build. Environ.
,
42
(5), pp.
2004
2013
.10.1016/j.buildenv.2006.04.001
9.
Nam
,
Y.
, and
Ooka
,
R.
,
2010
, “
Numerical Simulation of Grand Heat and Water Transfer for Groundwater Heat Pump System Based on Real-Scale Experiment
,”
Energy Build.
,
42
, pp.
69
75
.10.1016/j.enbuild.2009.07.012
10.
Bejan
,
A.
, and
Lorente
,
S.
,
2013
, “
Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society
,”
J. Appl. Phys.
,
113
, p.
151301
.10.1063/1.4798429
11.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Serpentine Thermal Coupling Between a Stream and a Conducting Body
,”
J. Appl. Phys.
,
111
, p.
044911
.10.1063/1.3689152
12.
“COMSOL Multiphysics,” 2013, Comsol Inc., Burlington, MA, http://www.comsol.com/
13.
Jung
,
J.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2011
, “
Configuration of Heat Sources or Sinks in a Finite Volume
,”
J. Appl. Phys.
,
110
, p.
023502
.10.1063/1.3610387
14.
Combelles
,
L.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Tree-Shaped Fluid Flow and Heat Storage in a Conducting Solid
,”
J. Appl. Phys.
,
111
, p.
014902
.10.1063/1.3671672
15.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Freely Morphing Tree Structure in a Conducting Body
,”
Int. J. Heat Mass Transfer
,
55
, pp.
4744
4753
.10.1016/j.ijheatmasstransfer.2012.04.038
16.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2012
, “
Trees and Serpentines in a Conducting Body
,”
Int. J. Heat Mass Transfer
,
56
, pp.
488
494
.10.1016/j.ijheatmasstransfer.2012.09.012
17.
Rocha
,
L. A. O.
,
Lorente
,
S.
,
Bejan
,
A.
, and
Anderson
,
R.
,
2012
, “
Constructal Design of Underground Heat Sources or Sinks for the Annual Cycle
,”
Int. J. Heat Mass Transfer
,
55
, pp.
7832
7837
.10.1016/j.ijheatmasstransfer.2012.08.010
18.
Kobayashi
,
H.
,
Lorente
,
S.
,
Anderson
,
R.
, and
Bejan
,
A.
,
2013
, “
Underground Heat Flow Patterns for Dense Neighborhoods With Heat Pumps
,”
Int. J. Heat Mass Transfer
,
62
, pp.
632
637
.10.1016/j.ijheatmasstransfer.2013.03.030
19.
Bejan
,
A.
, and
Lorente
,
S.
,
2011
, “
The Constructal Law Origin of the Logistics S Curve
,”
J. Appl. Phys.
,
110
, p.
024901
.10.1063/1.3606555
20.
Bejan
,
A.
, and
Lorente
,
S.
,
2012
, “
The S-Curves are Everywhere
,”
Mech. Eng.
,
134
, pp.
44
47
.
21.
Cetkin
,
E.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2012
, “
The Steepest S Curve of Spreading and Collecting: Discovering the Invading Tree, Not Assuming it
,”
J. Appl. Phys.
,
111
, p.
114903
.10.1063/1.4721657
22.
Bejan
,
A.
, and
Lorente
,
S.
,
2012
, “
The Physics of Spreading Ideas
,”
Int. J. Heat Mass Transfer
,
55
, pp.
802
807
.10.1016/j.ijheatmasstransfer.2011.10.029
You do not currently have access to this content.