A high-temperature, sensible heat thermal energy storage (TES) system is designed for use in a central receiver concentrating solar power plant. Air is used as the heat transfer fluid and solid bricks made out of a high storage density material are used for storage. Experiments were performed using a laboratory-scale TES prototype system, and the results are presented. The air inlet temperature was varied between 300 °C to 600 °C, and the flow rate was varied from 50 cubic feet per minute (CFM) to 90 CFM. It was found that the charging time decreases with increase in mass flow rate. A 1D packed-bed model was used to simulate the thermal performance of the system and was validated with the experimental results. Unsteady 1D energy conservation equations were formulated for combined convection and conduction heat transfer and solved numerically for charging/discharging cycles. Appropriate heat transfer and pressure drop correlations from prior literature were identified. A parametric study was done by varying the bed dimensions, fluid flow rate, particle diameter, and porosity to evaluate the charging/discharging characteristics, overall thermal efficiency, and capacity ratio of the system.

References

References
1.
Meier
,
A.
,
Winkler
,
C.
, and
Wuillemin
,
D.
,
1991
, “
Experiment for Modeling High Temperature Rock Bed Storage
,”
Sol. Energy Mater.
,
24
, pp.
255
264
.10.1016/0165-1633(91)90066-T
2.
Adebiyi
,
G. A.
,
Nsofor
,
E. C.
,
Steele
,
W. G.
, and
Jalalzadeh-Azar
,
A. A.
,
1998
, “
Parametric Study on the Operating Efficiencies of a Packed Bed for High-Temperature Sensible Heat Storage
,”
ASME J. Sol. Energy Eng.
,
120
, pp.
2
13
.10.1115/1.2888043
3.
Beasley
,
D. E.
, and
Clark
,
J. A.
,
1984
, “
Transient Response of a Packed Bed for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
27
, pp.
1659
1669
.10.1016/0017-9310(84)90278-3
4.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks-Heat Transfer Analysis and Experimental Validation
,”
Appl. Thermal Eng.
,
31
, pp.
1798
1806
.10.1016/j.applthermaleng.2010.10.034
5.
Mawire
,
A.
, and
McPherson
,
M.
,
2009
, “
Experimental and Simulated Temperature Distribution of an Oil-Pebble Bed Thermal Energy Storage System With a Variable Heat Source
,”
Appl. Thermal Eng.
,
29
, pp.
1086
1095
.10.1016/j.applthermaleng.2008.05.028
6.
Nsofor
,
E. C.
,
2005
, “
Investigations on the Packed Bed for High-Temperature Thermal Energy Storage
,”
Int. J. Green Energy
,
2
, pp.
337
351
.10.1080/01971520500287925
7.
Ozturk
,
H. H.
,
2004
, “
Comparison of Energy and Exergy Efficiencies of an Underground Solar Thermal Storage System
,”
Int. J. Energy Res.
,
28
, pp.
341
353
.10.1002/er.968
8.
Saez
,
A. E.
, and
McCoy
,
B. J.
,
1982
, “
Dynamic Response of a Packed Bed Thermal Storage System—A Model for Solar Air Heating
,”
Sol. Energy
,
29
, pp.
201
206
.10.1016/0038-092X(82)90206-7
9.
Schumann
,
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
208
, pp.
405
416
.10.1016/S0016-0032(29)91186-8
10.
Singh
,
R.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2006
, “
Nusselt Number and Friction Factor Correlations for Packed Bed Solar Energy Storage System Having Large Sized Elements of Different Shapes
,”
Sol. Energy
,
80
, pp.
760
771
.10.1016/j.solener.2005.07.001
11.
Sorour
,
M. M.
,
1988
, “
Performance of a Small Sensible Heat Energy Storage Unit
,”
Energy Convers. Manage.
,
28
, pp.
211
217
.10.1016/0196-8904(88)90024-6
12.
Taylor
,
M. J.
,
Krane
,
R. J.
, and
Parsons
,
J. R.
,
1991
, “
Second Law Optimization of a Sensible Heat Thermal Energy Storage System With a Distributed Storage Element—Part II: Presentation and Interpretation of Results
,”
ASME J. Energy Resour. Technol.
,
113
, pp.
27
32
.10.1115/1.2905776
13.
Valmiki
,
M. M.
,
Karaki
,
W.
,
Li
,
P.
,
Lew
,
J. V.
,
Chan
,
C.
, and
Stephens
,
J.
,
2012
, “
Experimental Investigation of Thermal Storage Processes in a Thermocline Tank
,”
ASME J. Sol. Energy Eng.
,
134
, p.
041003
.10.1115/1.4006962
14.
Van Lew
,
J. T.
,
Li
,
P.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
, p.
021003
.10.1115/1.4003685
15.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Parametric Study and Standby Behavior of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Renewable Energy
,
48
, pp.
1
9
.10.1016/j.renene.2012.04.017
16.
Sagara
,
K.
, and
Nakahara
,
N.
,
1991
, “
Thermal Performance and Pressure Drop of Rock Beds With Large Storage Materials
,”
Sol. Energy
,
47
, pp.
157
163
.10.1016/0038-092X(91)90074-7
17.
Jalalzadeh-Azar
,
A. A.
,
Steele
,
W. G.
, and
Adebiyi
,
G. A.
,
1996
, “
Heat Transfer in a High-Temperature Packed Bed Thermal Energy Storage System—Roles of Radiation and Intraparticle Conduction
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
50
57
.10.1115/1.2792693
18.
Singh
,
R.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2008
, “
Simulated Performance of Packed Bed Solar Energy Storage System Having Storage Material Elements of Large Size—Part I
,”
Open Fuels Energy Sci. J.
,
1
, pp.
91
96
.
19.
Ahn
,
B.-J.
,
Zoulalian
,
A.
, and
Smith
,
J. M.
,
1986
, “
Axial Dispersion in Packed Beds With Large Wall Effect
,”
AIChE J.
,
32
, pp.
170
174
.10.1002/aic.690320123
20.
Al-Sumaily
,
G. F.
,
Nakayama
,
A.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
,
2012
, “
The Effect of Porous Media Particle Size on Forced Convection From a Circular Cylinder Without Assuming Local Thermal Equilibrium Between Phases
,”
Int. J. Heat Mass Transfer
,
55
, pp.
3366
3378
.10.1016/j.ijheatmasstransfer.2012.03.007
21.
Clement
,
K.
, and
Jörgensen
,
S. B.
,
1983
, “
Experimental Investigation of Axial and Radial Thermal Dispersion in a Packed Bed
,”
Chem. Eng. Sci.
,
38
, pp.
835
842
.10.1016/0009-2509(83)80003-7
22.
Coutier
,
J. P.
, and
Farber
,
E. A.
,
1982
, “
Two Applications of a Numerical Approach of Heat Transfer Process Within Rock Beds
,”
Sol. Energy
,
29
, pp.
451
462
.10.1016/0038-092X(82)90053-6
23.
Gomezplata
,
J.
,
1969
, “
Axial Dispersion Coefficients in Packed Beds at Low Reynolds Number
,”
Can. J. Chem. Eng.
,
47
, pp.
353
359
.10.1002/cjce.5450470410
24.
Gunn
,
D. J.
, and
De Souza
,
J. F. C.
,
1974
, “
Heat Transfer and Axial Dispersion in Packed Beds
,”
Chem. Eng. Sci.
,
29
, pp.
1363
1371
.10.1016/0009-2509(74)80160-0
25.
Howell
,
J. R.
,
Bannerot
,
R. B.
, and
Vliet
,
G. C.
,
1982
,
Solar Thermal Energy Systems
,
McGraw-Hill
,
New York
.
26.
Hughes
,
P. J.
,
Klein
,
S. A.
, and
Close
,
D. J.
,
1976
, “
Packed Bed Thermal Storage Models for Solar Air Heating and Cooling Systems
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
98
, pp.
336
338
.10.1115/1.3450552
27.
Jeffreson
,
C. P.
,
1972
, “
Prediction of Breakthrough Curves in Packed Beds: I. Applicability of Single Parameter Models
,”
AIChE J.
,
18
, pp.
409
416
.10.1002/aic.690180225
28.
Jeffreson
,
C. P.
,
1972
, “
Prediction of Breakthrough Curves in Packed Beds: II. Experimental Evidence for Axial Dispersion and Intraparticle Effects
,”
AIChE J.
,
18
, pp.
416
420
.10.1002/aic.690180226
29.
Levec
,
J.
, and
Carbonell
,
R. G.
,
1985
, “
Longitudinal and Lateral Thermal Dispersion in Packed Beds—Part I: Theory
,”
AIChE J.
,
31
, pp.
581
590
.10.1002/aic.690310408
30.
Löf
,
G. O. G.
, and
Hawley
,
R. W.
,
1948
, “
Unsteady-State Heat Transfer Between Air and Loose Solids
,”
Ind. Eng. Chem.
,
40
, pp.
1061
1070
.10.1021/ie50462a017
31.
Nsofor
,
E. C.
, and
Adebiyi
,
G. A.
,
2001
, “
Measurements of the Gas-Particle Convective Heat Transfer Coefficient in a Packed Bed for High-Temperature Energy Storage
,”
Exp. Thermal. Fluid Sci.
,
24
, pp.
1
9
.10.1016/S0894-1777(00)00047-9
32.
Riaz
,
M.
,
1977
, “
Analytical Solutions for Single- and Two-Phase Models of Packed-Bed Thermal Storage Systems
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
99
, pp.
489
492
.10.1115/1.3450725
33.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2010
, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1059
1069
.10.1016/j.rser.2009.10.022
34.
Sodha
,
M. S.
,
Sawhney
,
R. L.
,
Verma
,
R.
, and
Bansal
,
N. K.
,
1986
, “
Effect of Finite Thermal Conductivity on the Thermal Performance of a Storage Medium
,”
Build. Environ.
,
21
, pp.
189
194
.10.1016/0360-1323(86)90029-6
35.
Srinivasan
,
R.
, and
Raghunandan
,
B. N.
,
2013
, “
Experiments on Thermal Response of Low Aspect Ratio Packed Beds at High Reynolds Numbers With Varying Inflow Temperature
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
323
333
.10.1016/j.expthermflusci.2012.07.004
36.
Vortmeyer
,
D.
, and
Schaefer
,
R. J.
,
1974
, “
Equivalence of One- and Two-Phase Models for Heat Transfer Processes in Packed Beds: One Dimensional Theory
,”
Chem. Eng. Sci.
,
29
, pp.
485
491
.10.1016/0009-2509(74)80059-X
37.
Yang
,
J.
,
Wang
,
J.
,
Bu
,
S.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Nakayama
,
A.
,
2012
, “
Experimental Analysis of Forced Convective Heat Transfer in Novel Structured Packed Beds of Particles
,”
Chem. Eng. Sci.
,
71
, pp.
126
137
.10.1016/j.ces.2011.12.005
38.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2013
, “
Performance of a Packed Bed Solar Energy Storage System Having Large Sized Elements With Low Void Fraction
,”
Sol. Energy
,
87
, pp.
22
34
.10.1016/j.solener.2012.10.004
39.
Mumma
,
S. A.
, and
Marvin
,
W. C.
,
1976
, “
A Method of Simulating the Performance of a Pebble Bed Thermal Energy Storage and Recovery System
,”
ASME and AICE, Heat Transfer Conference
, St. Louis, MO, August 9–11, p.
126
.
40.
Kim
,
L. V.
,
1994
, “
Determination of the Heat Transfer Coefficients in Porous Media
,”
J. Eng. Phys. Thermophys.
,
65
, pp.
1168
1172
.10.1007/BF00861937
41.
Singh
,
R.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2005
, “
Performance Analysis of Packed Bed Solar Energy Storage System Having Large Size Material of Different Shapes
,” ISES 2005
Solar World Congress
, Orlando, FL, August 6–12.
You do not currently have access to this content.