Wind mapping is of utmost importance in various wind energy and wind engineering applications. The available wind atlases usually provide wind data with low spatial resolution relative to the wind turbine height and usually neglect the effect of topographic features with relatively large or sudden changes in elevation. Two benchmark cases are studied for computational fluid dynamics (CFD) model evaluation on smooth two-dimensional (2D) and three-dimensional (3D) hills. Thereafter, a procedure is introduced to build CFD model of a complex terrain with high terrain roughness heights (dense urban area with skyscrapers) starting from existing topography maps in order to properly extend the wind atlas data over complex terrains. CFD simulations are carried out on a 1:3000 scale model of complex topographic area using Reynolds averaged Navier–Stokes (RANS) equations along with shear stress transport (SST) k-ω turbulence model and the results are compared with the wind tunnel measurements on the same model. The study shows that CFD simulations can be successfully used in qualifying and quantifying the flow over complex topography consisting of a wide range of roughness heights, enabling to map the flow structure with very high spatial resolution.

References

References
1.
Siddiqui
,
K.
,
Hangan
,
H.
, and
Rasouli
A.
,
2008
, “
PIV Technique Implementation for Wind Mapping in Complex Topographies
,”
Meas. Sci Technol.
,
19
(
6
), p.
065403
.10.1088/0957-0233/19/6/065403
2.
Rasouli
,
A.
,
Hangan
,
H.
, and
Siddiqui
,
K.
,
2009
, “
PIV Measurements for a Complex Topographic Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
97
, pp.
242
254
.10.1016/j.jweia.2009.06.010
3.
Jackson
,
P. S.
, and
Hunt
,
J. C. R.
,
1975
, “
Turbulent Wind Flow Over a Low Hill
,”
Q. J. R. Meteorol. Soc.
,
101
, pp.
929
955
.10.1002/qj.49710143015
4.
Hunt
,
J. C. R.
,
Leibovich
,
S.
, and
Richards
,
K. J.
,
1988
, “
Turbulent Shear Flows Over Low Hills
,”
Q. J. R. Meteorol. Soc.
,
114
, pp.
1435
1470
.10.1002/qj.49711448405
5.
Lemelin
,
D. R.
,
Surrey
,
D.
, and
Davenport
,
A. G.
,
1988
, “
Simple Approximations for Wind Speed-Up Over Hills
,”
J. Wind Eng. Ind. Aerodyn.
,
28
, pp.
117
127
.10.1016/0167-6105(88)90108-0
6.
Cook
,
N. J.
,
1985
,
The Designer's Guide to Wind Loading of Building Structure. Part 1
,
Butterworths
,
London
.
7.
Miller
,
C. A.
,
1996
, “
Turbulent Boundary Layers Above Complex Terrain
,” Ph.D. thesis,
Boundary Layer Wind Tunnel Laboratory, University of Western Ontario
, London,
Canada
.
8.
Apsley
,
D. D.
, and
Castro
,
I. P.
,
1997
, “
Flow and Dispersion Over Hills: Comparison Between Numerical Predictions and Experimental Data
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
375
386
.10.1016/S0167-6105(97)00087-1
9.
Stangroom
,
P.
,
2004
, “
CFD Modelling of Wind Flow Over Terrain
,” Ph.D. thesis,
University of Nottingham
, Nottingham, UK.
10.
Prospathopoulos
,
J.
, and
Voutsinas
,
S. J.
,
2006
, “
Implementation Issues in 3D Wind Flow Predictions Over Complex Terrain
,”
ASME J. Sol. Energy Eng.
,
128
, pp.
539
553
.10.1115/1.2346702
11.
Undheim
,
O.
,
Anderson
,
H. I.
, and
Berge
,
E.
,
2006
, “
Non-Linear, Microscale Modeling of the Flow Over Askervein Hill
,”
Boundary-Layer Meteorol.
,
120
, pp.
477
495
.10.1007/s10546-006-9065-5
12.
Chow
,
F. K.
, and
Street
,
R. L.
,
2008
, “
Evaluation of Turbulence Closure Models for Large-Eddy Simulation Over Complex Terrain: Flow Over Askervein Hill
,”
J. Appl. Meteor. Climatol.
,
48
, pp.
1050
1065
.10.1175/2008JAMC1862.1
13.
Lopes
,
A. S.
,
Palma
,
J. M. L. M.
, and
Castro
,
F. A.
,
2007
, “
Simulation of the Askervein Flow—Part 2: Large-Eddy Simulations
,”
Boundary-Layer Meteorol.
,
125
, pp.
85
108
.10.1007/s10546-007-9195-4
14.
Kim
,
H. D.
,
Patel
,
V. C.
, and
Lee
,
C. H.
,
2000
, “
Numerical Simulation of Wind Flow Over Hilly Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
87
, pp.
45
60
.10.1016/S0167-6105(00)00014-3
15.
Bechmann
,
A.
,
Sørensen
,
N. N.
,
Berg
,
J.
,
Mann
,
J.
, and
Réthoré
,
P.-E.
,
2011
, “
The Bolund Experiment, Part II: Blind Comparison of Microscale Flow Models
,”
Boundary-Layer Meteorol.
,
141
, pp.
245
271
.10.1007/s10546-011-9637-x
16.
Wakes
,
S.
,
Maegli
,
T.
,
Dickinson
,
K. J.
, and
Hilton
,
M. J.
,
2010
, “
Numerical Modeling of Wind Flow Over a Complex Topography
,”
Environ. Modell. Software
,
25
, pp.
237
247
.10.1016/j.envsoft.2009.08.003
17.
Uchida
,
T.
, and
Ohya
,
Y.
,
1999
, “
Numerical Simulation of Atmospheric Flow Over Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
81
, pp.
283
293
.10.1016/S0167-6105(99)00024-0
18.
Uchida
,
T.
, and
Ohya
,
Y.
,
2003
, “
Large-Eddy Simulation of Turbulent Flow Over Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
91
, pp.
219
229
.10.1016/S0167-6105(02)00347-1
19.
Uchida
,
T.
, and
Ohya
,
Y.
,
2008
, “
Micro-Siting Technique for Wind Turbine Generators by Using Large-Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
96
, pp.
2121
2138
.10.1016/j.jweia.2008.02.047
20.
Uchida
,
T.
, and
Ohya
,
Y.
,
2008
, “
Verification of the Prediction Accuracy of Annual Energy Output at Noma Wind Park by the Non-Stationary and Non-Linear Wind Synopsis Simulator
,”
J. Fluid Sci. Technol.
,
3
(3), pp.
344
358
.10.1299/jfst.3.344
21.
Naughton
,
J.
,
Viken
,
S.
, and
Greenblatt
,
D.
,
2004
, “
Wall Shear Stress Measurements on the NASA Hump Model for CFD Validation
,” AIAA Paper No. 2004-2607.
22.
Naughton
,
J.
,
Viken
,
S.
, and
Greenblatt
,
D.
,
2006
, “
Skin-Friction Measurements on the NASA Hump Model
,”
AIAA J.
,
44
(
6
), pp.
1255
1265
.10.2514/1.14192
23.
Seifert
,
A.
, and
Pack
,
L. G.
,
2002
, “
Active Flow Separation Control on Wall-Mounted Hump at High Reynolds Numbers
,”
AIAA J.
,
40
(
7
), pp.
1363
1372
.10.2514/2.1796
24.
Greenblatt
,
D.
,
Paschal
,
K. B.
,
Yao
,
C. S.
,
Harris
,
J.
,
Schaeffler
,
N. W.
, and
Washburn
,
A. E.
,
2004
, “
A Separation Control CFD Validation Test Case, Part 1: Baseline and Steady Suction
,”
AIAA
Paper No. 2004-2220.10.2514/6.2004-2220
25.
Viken
,
S. A.
,
Vatsa
,
V. N.
,
Rumsey
,
C. L.
, and
Carpenter
,
M. H.
,
2003
, “
Flow Control Analysis on the Hump Model With RANS Tools
,”
AIAA
Paper No. 2003-0218.10.2514/6.2003-0218
26.
fluent 6.3.26 User's Guide,
2007
,
Fluent, Inc.
,
Lebanon, NH
.
27.
You
,
D.
,
Wang
,
M.
, and
Moin
P.
,
2006
, “
Large-Eddy Simulation of Flow Over a Wall-Mounted Hump With Separation Control
,”
AIAA J.
,
44
(
11
), pp.
2571
2577
.10.2514/1.21989
28.
Ishihara
,
T.
,
Hibi
,
K.
, and
Oikawa
S.
,
1999
, “
A Wind Tunnel Study of Turbulent Flow Over a Three-Dimensional Steep Hill
,”
J. Wind Eng. Ind. Aerodyn.
,
83
, pp.
95
107
.10.1016/S0167-6105(99)00064-1
29.
Ishihara
,
T.
, and
Hibi
,
K.
,
2002
, “
Numerical Study of Turbulent Wake Flow Behind a Three-Dimensional Steep Hill
,”
Wind Struct.
,
5
(2), pp.
317
328
.
30.
Ho
,
T. C. E.
, and
De Leebeeck
,
K.
,
2004
, “
Hong Kong Sanatorium and Hospital Happy Valley Hong Kong
,” Boundary Layer Wind Tunnel Report No. BLWT-SS44-2004.
31.
Farquhar
,
S.
, and
Ho
,
T. C. E.
,
2004
, “
39 Conduit Road Mid-Levels Hong Kong
,” Boundary Layer Wind Tunnel Report No. BLWT-SS60-2004.
32.
Blocken
,
B.
,
Stathopoulos
,
T.
, and
Carmeliet
,
J.
,
2007
, “
CFD Simulation of the Atmospheric Boundary Layer: Wall Function Problems
,”
Atmos. Environ.
,
41
, pp.
238
252
.10.1016/j.atmosenv.2006.08.019
33.
Hargreaves
,
D. M.
, and
Wright
,
N. G.
,
2007
, “
On the Use of the k-Model in Commercial CFD Software to Model the Neutral Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
95
, pp.
355
369
.10.1016/j.jweia.2006.08.002
34.
Akomah
,
A.
,
2004
, “
Experimental Investigation of High Reynolds Number Rough Surface Boundary Layers
,” Ph.D. thesis,
University of Western Ontario
, London, Canada.
35.
Fang
,
C.
, and
Sill
,
B. L.
,
1992
, “
Aerodynamic Roughness Length: Correlation With Roughness Elements
,”
J. Wind Eng. Ind. Aerodyn.
,
41–44
, pp.
449
460
.10.1016/0167-6105(92)90444-F
36.
Wang
,
K.
, and
Stathopoulos
,
T.
,
2007
, “
Exposure Model for Wind Loading of Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
95
, pp.
1511
1525
.10.1016/j.jweia.2007.02.016
You do not currently have access to this content.