Optimal and cost-effective energy efficiency design and operation options are evaluated for office buildings in Tunisia. In the analysis, several design and operation features are considered including orientation, window location and size, high performance glazing types, wall and roof insulation levels, energy efficient lighting systems, daylighting controls, temperature settings, and energy efficient heating and cooling systems. First, the results of the optimization results from a sequential search technique are compared against those obtained by a more time consuming brute-force optimization approach. Then, the optimal design features for a prototypical office building are determined for selected locations in Tunisia. The optimization results indicate that utilizing daylighting controls, energy efficient lighting fixtures, and low-e double glazing, and roof insulation are required energy efficiency measures to design high energy performance office buildings throughout climatic zones in Tunisia. In particular, it is found that implementing these measures can cost-effectively reduce the annual energy use by 50% compared to the current design practices of office buildings in Tunisia.

References

1.
Belloumi
,
M.
,
2009
, “
Energy Consumption and GDP in Tunisia: Cointegration and Causality Analysis
,”
Energy Policy
,
37
(
7
), pp.
2745
2753
.10.1016/j.enpol.2009.03.027
2.
TEMA Consulting and CESEEN
,
Elaboration d'un Plan pour la Renovation Thermique et Energetique des Batiments Existantsen Tunisie, Partie-1: Connaissance et Analyse du Secteur, Technical Report for Agence Nationale pour la Maitrise de l'Energie (ANME), Tunis, Tunisia
, June, 2010.
3.
Saridar
,
S.
, and
Elkadi
,
H.
,
2002
, “
The Impact of Applying Recent Façade Technology on Daylighting Performance in Buildings in Eastern Mediterranean
,”
Building Environ.
,
37
(
11
), pp.
1205
1212
.10.1016/S0360-1323(01)00095-6
4.
Faggembauu
,
D.
,
Costa
,
M.
,
Soria
,
M.
, and
Oliva
,
A.
,
2003
, “
Numerical Analysis of the Thermal Behavior of Glazed Ventilated Facades in Mediterranean Climates. Part II: Applications and Analysis of Results
,”
Solar Energy
,
75
(
3
), pp.
229
239
.10.1016/j.solener.2003.07.014
5.
Khemiri
,
A.
, and
Hassairi
,
M.
,
2005
, “
Development of Energy Efficiency Improvement in the Tunisian Hotel Sector: A Case Study
,”
Renewable Energy
,
30
(
6
), pp.
903
911
.10.1016/j.renene.2004.09.021
6.
Bouden
,
C.
,
2007
, “
Influence of Glass Curtain Walls on the Building Thermal Energy Consumption Under Tunisian Climatic Conditions: The Case of Administrative Buildings
,”
Renewable Energy
,
32
(
1
), pp.
141
156
.10.1016/j.renene.2006.01.007
7.
Znouda
,
E.
,
Ghrab-Morcos
,
N.
, and
Hadj-Alouane
,
A.
,
2007
, “
Optimization of Mediterranean Building Design Using Genetic Algorithms
,”
Energy Build.
,
39
(
2
), pp.
148
153
.10.1016/j.enbuild.2005.11.015
8.
Daouas
,
N.
,
Hassen
,
Z.
, and
Aissia
,
H.
,
2010
, “
Analytical Periodic Solution for the Study of Thermal Performance and Optimum Insulation Thickness of Building Walls in Tunisia
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
319
326
.10.1016/j.applthermaleng.2009.09.009
9.
D'Orazio
,
M.
,
Di Perna
,
C.
, and
Di Giuseppe
,
E.
,
2010
, “
The Effects of Roof Covering on the Thermal Performance of Highly Insulated Roofs in Mediterranean Climates
,”
Energy Build.
,
42
(
10
), pp.
1619
1627
.10.1016/j.enbuild.2010.04.004
10.
Daouas
,
N.
,
2011
, “
A Study on Optimum Insulation Thickness in Walls and Energy Saving in Tunisian Buildings Based on Analytical Calculation of Cooling and Transmission Loads
,”
Appl. Energy
,
88
(
1
), pp.
156
164
.10.1016/j.apenergy.2010.07.030
11.
Ouertani
,
K.
, and
Krarti
,
M.
,
2006
, “
Impact of Shape on Building Energy Use in Tunisia
,”
35th ASME International Solar Energy Conference (Solar 2006)
, Denver, CO, July 8–13,
ASME
Paper No. ISEC2006-99135, pp.
621
628
.10.1115/ISEC2006-99135
12.
Ouarghi
,
R.
, and
Krarti
,
M.
,
2006
, “
Building Shape Optimization Using Neural Network and Genetic Algorithm Approach
,”
ASHRAE Trans.
,
112
, pp.
484
491
.
13.
Znouda
,
E.
,
Ghrab-Morcos
,
N.
, and
Hadj-Alouane
,
A.
,
2007
, “
Optimization of Mediterranean Building Design Using Genetic Algorithms
,”
Energy Build.
,
39
(
2
), pp.
148
153
.10.1016/j.enbuild.2005.11.015
14.
Winkelmann
,
F. C.
,
Birsdall
,
B. E.
,
Bull
,
W. F.
,
Ellington
,
K. L.
,
Erdem
,
A. E.
, and
Hirsh
,
J. J.
,
1993
, “
DOE-2 Supplement, Version 2.1E
,” Technical Report NO. LBL-34947, Lawrence Berkeley National Laboratory, Berkeley, CA.
15.
Christensen
,
C.
,
Barker
,
G.
, and
Horowitz
,
S.
, 2004, “
A Sequential Search Technique for Identifying Optimal Building Designs on the Path to Zero Net Energy
,” Proceedings of the Solar 2004 Conference, Portland, OR, July 11–14, ASES, Boulder, CO., pp. 877–882.
16.
Horowitz
,
S.
,
Christensen
,
C.
,
Brandemuehl
,
M.
, and
Krarti
,
M.
,
2008
An Enhanced Sequential Search Methodology for Identifying Cost-Optimal Building Pathways
,” Third National Conference of IBPSA-USA (Simbuild 2008), Berkeley, CA, July 30–August 1, pp.
100
107
.
17.
Urban
,
B.
, and
Roth
,
K.
,
2010
,
Guidelines for Selecting Cool Roofs
,
U.S. Department of Energy
, Energy Efficiency and Renewable Energy.
18.
Cool Roof Rating Council
, http://www.coolroofs.org
19.
Cool Roof Rating Council
,
2008
, Title 24 Update: Summary of 2008 Changes to California's Cool Roof Requirements.
20.
USAID
,
2007
,
Energy Conservation and Commercialisation Project—Phase III, An Introduction to Cool Roof
, Prepared by USAID ECO III Project Office, New Delhi, India.
21.
Alexandri
,
E.
,
Papastefanakis
,
D.
, and
Damasiotis
,
M.
,
2008
,
Integration of Solar Technologies Into Buildings in Mediterranean Communities
,
Centre for Renewable Energy Sources
, Athens.
22.
Krarti
,
M.
,
2010
,
Energy Audit of Building Systems: An Engineering Approach
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
23.
Wagner
,
M.
,
Blair
,
N.
, and
Dobos
,
A.
,
2010
, “A Detailed Physical Trough Model for NREL's Solar Advisor Model,” SolarPACES 2010, Perpignan,
France
, September 21–24.
You do not currently have access to this content.