In this study, a first-order environmental impact study of a large-scale deployment of solar energy-installed technologies in a complex coastal urban environment is conducted. The work is motivated by the positive prospects of building-integrated solar technologies as a sustainable alternative to energy demands and reduction of green house gases. Large-scale deployment of solar technologies in rooftops of densely populated cities may have the potential of modifying surface energy budgets resulting in cooling or heating of the urban environment. To investigate this case, a mesoscale simulation (regional atmospheric simulation system (RAMS)) effort was undertaken, with a horizontal grid resolution of 4 km on an innermost grid over Southern California (South Coast Air Basin (SoCAB)). The simulation period was selected in summer 2002 where strong urban heat islands (UHIs) were observed for the region. The urban landscape was modified to represent a percentage of the rooftops with optical and thermal properties corresponding to solar PV and thermal collectors. Results show that the large-scale presence of solar technologies in rooftops of SoCAB may have a net positive thermal storage of the buildings, an effect enhancing the existing UHI by up to 0.2 °C. This additional heat is advected inland as the sea breeze develops warming further inland areas. The net environmental effect of solar technologies when compared with solar energy production was not investigated in this study.

References

References
1.
Turney
,
D.
, and
Fthenakis
V.
,
2011
, “
Environmental Impacts From the Installation and Operation of Large-Scale Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
15
, pp.
3261
3270
.10.1016/j.rser.2011.04.023
2.
Nemet
G. F.
,
2009
, “
Net Radiative Forcing From Widespread Deployment of Photovoltaics
,”
Environ. Sci. Technol.
,
43
, pp.
2173
2178
.10.1021/es801747c
3.
Fthenakis
, V
. M.
,
Kim
,
H. C.
,
Alsema
,
E.
,
2008
, “
Emissions From Photovoltaic Life Cycles
,”
Environ. Sci. Technol.
,
42
, pp.
2168
2174
.10.1021/es071763q
4.
Bornstein
,
R. D.
,
1968
, “
Observations of the Urban Heat Island Effect in New York City
,”
J. Appl. Meteorol.
,
7
, pp.
575
582
.10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2
5.
Rao
,
P. K.
,
1972
,
“Remote Sensing of Urban Heat Islands From an Environmental Satellite
,”
Bull. Am. Meteorol. Soc.
,
53
, pp.
647
648
.
6.
Landsberg
,
H. E.
,
1970
, “
Man-Made Climate Changes
,”
Science
,
170
, pp.
1265
1274
.10.1126/science.170.3964.1265
7.
Gallo
,
K. P.
,
McNab
,
A. L.
,
Karl
,
T. R.
,
Brown
,
J. F.
,
Hood
,
J. J.
, and
Tarpley
,
J. D.
,
1993
, “
The Use of a Vegetation Index for Assessment of the Urban Heat Island Effect
,”
Int. J. Remote Sens.
,
14
(
11
), pp.
2223
2230
.10.1080/01431169308954031
8.
Tso
,
C. P.
,
1995
, “
A Survey of Urban Heat Island Studies in Two Tropical Cities
,”
Atmos. Environ.
,
30
, pp.
507
519
.10.1016/1352-2310(95)00083-6
9.
Jauregui
,
E.
,
1997
, “
Heat Island Development in Mexico City
,”
Atmos. Environ.
,
31B
, pp.
3821
3831
.10.1016/S1352-2310(97)00136-2
10.
Jauregui
,
E.
, and
Romales
,
E.
,
1996
, “
Urban Effects of Convective Precipitation in Mexico City
,”
Atmos. Environ.
,
30
(
B
), pp.
3383
3389
.10.1016/1352-2310(96)00041-6
11.
Lo
,
C. P.
,
Quattrochi
D. A.
, and
Luvall
,
J. C.
,
1997
, “
Applications of High-Resolution Thermal Infrared Remote Sensing and GIS to Asses the Urban Heat Island Effect
,”
Int. J. Remote Sens.
,
18
(
2
), pp.
287
204
.10.1080/014311697219079
12.
Pon
,
B.
,
Stamper-Kurn
,
D. M.
,
Smith
,
C. K.
, and
Akbari
,
H.
,
2000
, “
Existing Climate Data Sources and Their Use in Heat Island Research
,” Orlando Lawrence Berkeley National Laboratory, CA, Tech. Rep. LBL-41973.
13.
Lebassi
,
B. H.
,
González
,
J. E.
,
Fabris
,
D.
,
Miller
,
N. L.
, and
Milesi
,
C.
,
2006
, “
Modeling Urban Heat Islands in California Central Valley
,”
AMS 6th Symposium on the Urban Environment
, Atlanta, GA, January 29–February 2, Paper No 3.1.
14.
Myrup
,
L. D.
,
1969
, “
A Numerical Model of the Urban Heat Island
,”
J. Appl Meteor.
,
8
(6), pp.
908
918
.10.1175/1520-0450(1969)008<0908:ANMOTU>2.0.CO;2
15.
Price
,
J. C.
,
1979
, “
Assessment of the Urban Heat Island Effect Through the Use of Satellite Data
,”
Mon. Weather Rev.
,
107
, pp.
1554
1557
.10.1175/1520-0493(1979)107<1554:AOTUHI>2.0.CO;2
16.
Dixon
,
P. G.
, and
Mote
,
L. T.
,
2003
, “
Patterns and Causes of Atlanta's Urban Heat Island-Initiated Precipitation
,”
J. Appl. Meteor.
,
42
, pp.
1273
1284
.10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2
17.
Lebassi
,
B.
,
González
,
J. E.
,
Fabris
,
D.
,
Milesi
,
C.
,
Miller
,
N. L.
,
Switzer
,
P.
, and
Bornstein
,
R.
,
2009
, “
Observed 1970–2005 Cooling of Summer Daytime Temperatures in Coastal California
,”
J. Clim.
,
22
, pp.
3558
3573
.10.1175/2008JCLI2111.1
18.
Tripoli
,
G. J.
, and
Cotton
W. R.
,
1982
, “
The Colorado State University Three-Dimensional Cloud/Mesoscale Model—1982. Part I: General Theoretical Framework and Sensitivity Experiments
,”
J. Rech. Atmos.
,
16
, pp.
185
220
.
19.
Pielke
,
R. A.
,
1984
,
Mesoscale Meteorological Modeling
, Academic Press, San Diego, CA.
20.
Mesinger
,
F.
, and
Arakawa
A.
,
1976
, “
Numerical Methods Used in Atmospheric Models
,” WMO/ICSU Joint Organizing Committee, GARP Publications Series No. 17.
21.
Lebassi
,
B.
,
Fabris
,
D.
,
Gonzalez
,
J. E.
,
Zarantonello
,
S.
,
Chiappari
,
S.
,
Miller
,
N. L.
, and
Bornstein
,
R.
,
2005
, “
Urban Heat Islands in California's Central Valley
,”
Bull. Am. Meteorol. Soc.
,
86
, pp.
1542
1543
.
22.
Dickinson
,
R. E.
,
Kennedy
,
P. J.
, and
Wilson
,
M. F.
,
1986
, “
Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model
,” National Center for Atmospheric Research, Boulder, CO, NCAR Technical Note NCAR/TN275+STR.
23.
Acciani
,
G.
,
Simione
,
G. B.
, and
Vergura
,
S.
,
2010
, “
Thermographic Analysis of Photovoltaic Panels
,”
International Conference on Renewable Energies and Power Quality (ICREPQ'10)
, Granada, Spain, March 23–25.
24.
Jones
,
A. D.
, and
Underwood
,
C. P.
,
2001
, “
A Thermal Model for Photovoltaic Systems
,”
Sol. Energy
,
70
(
4
), pp.
349
359
.10.1016/S0038-092X(00)00149-3
25.
Sailor
,
D. J.
, and
Lu
,
L.
,
2004
, “
A Top-Down Methodology for Developing Diurnal and Seasonal Anthropogenic Heating Profiles for Urban Areas
,”
Atmos. Environ.
,
38
, pp.
2737
2748
.10.1016/j.atmosenv.2004.01.034
26.
Saitoh
,
T. S.
,
Shimada
,
T.
, and
Hoshi
,
H.
,
1995
, “
Modeling and Simulation of the Tokyo Urban Heat Island
,”
Atmos. Environ.
,
30
, pp.
3431
3442
.10.1016/1352-2310(95)00489-0
27.
Klemp
,
J. B.
, and
Lilly
,
D. K.
,
1978
, “
Numerical Simulation of Hydrostatic Mountain Waves
,”
J. Atmos. Sci.
,
35
, pp.
78
107
.10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO;2
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiment With the Primitive Equations. Part I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
29.
Mellor
,
G.
, and
Yamada
,
T.
,
1974
, “
A Hierarchy of Turbulence Closure Models for Planetary Boundary Layer
,”
J. Atmos. Sci.
,
31
, pp.
1791
1808
.10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
30.
Mahrer
,
Y.
, and
Pielke
,
R. A.
,
1977
, “
The Effect of Topography on Sea and Land Breezes in a Two Dimensional Numerical Model
,”
Mon. Weather Rev.
,
105
, pp.
1151
1162
.10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2
You do not currently have access to this content.