Due to the abundance of solar energy, solar cells are considered as a renewable source of energy to replace conventional fossil fuels. Compared to the silicon-based photovoltaic (PV) cell, the next generation dye-sensitized solar cell (DSSC) offers the advantages of increased absorption of visible light, high efficiency potential, less energy intensive and lower-cost manufacturing process, colorable design, and lightweight material options. DSSC is a photo-electrochemical system that is based on a photosensitive dye-sensitized semiconductor (mostly titanium dioxide, TiO2) anode and an iodide-based electrolyte. In order to improve the performance of current DSSC systems, we proposed various design improvement schemes through the use of TiO2 nanotube (TONT) arrays and a multistack design of single cells. Through design modifications, approximately 38% improvement in the performance compared to conventional DSSC is reported. Moreover, optical enhancements to increase the amount of incident light on the cell were applied to DSSCs to further improve its performance by application of Fresnel lenses on top of the DSSC and the use of light reflecting material such as Aluminum on the rear side of the cell. The polarization curves for different designs were measured using a potentiostat and the performance of each cell was compared. Optical enhancements improved the power output by 27% compared to normal cells. A semi-empirical DSSC model was also developed based on the experimental results and the change in the performance of different designs was examined. Based on the model, the necessary conditions for maximum performance could be determined.

References

References
1.
O'Reagan
,
B.
, and
Gratzel
,
M.
,
1991
, “
A Low-Cost, High-Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films
,”
Nature
,
353
, pp.
737
740
.10.1038/353737a0
2.
Nazeeruddin
,
M. K.
,
Angelis
,
F. D.
,
Fantacci
,
S.
,
Selloni
,
A.
,
Viscardi
,
G.
,
Liska
,
P.
,
Ito
,
S.
,
Takeru
,
B.
, and
Gratzel
,
M.
,
2005
, “
Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers
,”
J. Am. Chem. Soc.
,
127
(
48
), pp.
16835
16847
.10.1021/ja052467l
3.
Shockley
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
,”
J. Appl. Phys.
,
32
(
3
), pp.
510
519
.10.1063/1.1736034
4.
Bisquert
,
J.
,
Cahen
,
D.
,
Hodes
,
G.
,
Rühle
,
S.
, and
Zaban
,
A.
,
2004
, “
Physical Chemical Principles of Photovoltaic Conversion With Nanoparticulate, Mesoporous Dye-Sensitized Solar Cell
,”
J. Phys. Chem. B
,
108
(
24
), pp.
8106
8118
.10.1021/jp0359283
5.
Pavasupree
,
S.
,
Ngamsinlapasathian
,
S.
,
Suzuki
,
Y.
, and
Yoshikawa
,
S.
,
2006
, “
Synthesis and Dye-Sensitized Solar Cell Performance of Nanorods/Nanoparticles TiO2 From High Surface Area Nanosheet TiO2
,”
J. Nanosci. Nanotechnol.
,
6
(
12
), pp.
3685
3692
.10.1166/jnn.2006.612
6.
Kang
,
S. H.
,
Choi
,
S.-H.
,
Kang
,
M.-S.
,
Kim
,
J.-Y.
,
Kim
,
H.-S.
,
Hyeon
,
T.
, and
Sung
,
Y.-E.
,
2008
, “
Nanorod-Based Dye-Sensitized Solar Cells With Improved Charge Collection Efficiency
,”
Adv. Mater.
,
20
(
1
), pp.
54
58
.10.1002/adma.200701819
7.
Zhu
,
K.
,
Vinzant
,
T. B.
,
Neale
,
N. R.
, and
Frank
,
A. J.
,
2007
, “
Removing Structural Disorder From Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells
,”
Nano Lett.
,
7
(
12
), pp.
3739
3746
.10.1021/nl072145a
8.
Grimes
,
C. A.
,
2007
, “
Synthesis and Application of Highly-Ordered Arrays of TiO2 Nanotubes
,”
J. Mater. Chem.
,
17
, pp.
1451
1457
.10.1039/b701168g
9.
Zukalova
,
M.
,
Zukal
,
A.
,
Kavan
,
L.
,
Nazeeruddin
,
M. K.
,
Liska
,
P.
, and
Gratzel
,
M.
,
2005
, “
Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells
,”
Nano Lett.
,
5
(
9
), pp.
1789
1792
.10.1021/nl051401l
10.
Lewis
N. S.
,
2007
, “
Towards Cost-Effective Solar Energy Use
,”
Science
,
315
(
5813
), pp.
798
801
.10.1126/science.1137014
11.
Desilvestro
,
J.
,
Gratzel
,
M.
,
Kavan
,
L.
, and
Moser
,
J.
,
1985
, “
High Efficient Sensitization of Titanium Oxide
,”
J. Am. Chem. Soc.
,
107
(
10
), pp.
2988
2990
.10.1021/ja00296a035
12.
Gong
,
D.
,
Grimes
,
C. A.
,
Varghese
,
O. K.
,
Hu
,
W.
,
Singh
,
R. S.
,
Chen
,
Z.
, and
Dickey
,
E. C.
,
2001
, “
Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation
,”
J. Mater. Res.
,
16
(
12
), pp.
3331
3334
.10.1557/JMR.2001.0457
13.
Grimes
,
C.
, and
Shankar
,
K.
,
2008
, “
Titanium Dioxide Nanotube Arrays Improve Solar Cells
,”
SPIE Newsroom
, June 20.10.1117/2.1200806.1148
14.
Uchida
,
S.
,
Chiba
,
R.
,
Tomiha
,
M.
,
Masaka
,
N.
, and
Shirai
,
M.
,
2002
, “
Application of Titania Nanotubes to a Dye-Sensitized Solar Cell
,”
Electrochemistry
,
70
(
6
), pp.
418
420
.
15.
Ghicov
,
A.
,
Albu
,
S.
,
Hahn
,
R.
,
Kim
,
D.
,
Stergiopoulos
,
T.
,
Kunze
,
J.
,
Schiller
,
C.-A.
,
Falaras
,
P.
, and
Schmuki
,
P.
,
2009
, “
TiO2 Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency
,”
Chem Asian J
,
4
(
4
), pp.
520
525
.10.1002/asia.200800441
16.
Green
,
M. A.
,
2001
, “
Third Generation Photovoltaic: Ultra-High Conversion Efficiency at Low Cost
,”
Prog. Photovoltaics
,
9
(
2
), pp.
123
135
.10.1002/pip.360
17.
Kubo
,
W.
,
Sakamoto
,
A.
,
Kitamura
,
T.
,
Wada
,
Y.
, and
Yanagida
,
S.
,
2004
, “
Dye-Sensitized Solar Cells: Improvement of Spectral Response by Tandem Structure
,”
J. Photochem. Photobiol., A
,
164
(
1-3
), pp.
33
39
.10.1016/j.jphotochem.2004.01.024
18.
Durr
,
M.
,
Bamedi
,
A.
,
Yasuda
,
A.
, and
Nelles
,
G.
,
2004
, “
Tandem Dye-Sensitized Solar Cell for Improved Power Conversion Efficiencies
,”
Appl. Phys. Lett.
,
84
(
17
), pp.
3397
3399
.10.1063/1.1723685
19.
Swanson
,
R.
,
2000
, “
The Promise of Concentrators
,”
Prog. Photovoltaics
,
8
(
1
), pp.
93
111
.10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S
20.
Algora
,
C.
,
Ortiz
,
E.
,
Rey-Stolle
,
I.
,
Diaz
,
V.
,
Peña
,
R.
,
Andreev
,
V.
,
Khvostikov
,
V.
, and
Rumyantsev
,
V.
,
2001
, “
A GaAs Solar Cell With an Efficiency of 26.2% at 1000 Suns and 25.0% at 2000 Suns
,”
IEEE Trans. Electron Devices
,
48
(
5
), pp.
840
844
.10.1109/16.918225
21.
Hirose
,
F.
,
Shikaku
,
M.
,
Kimura
,
Y.
, and
Niwano
,
M.
,
2010
, “
IR Study on N719 Dye Adsorption With High Temperature Dye Solution for Highly Efficient Dye Sensitized Solar Cells
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
B1578
B1581
.10.1149/1.3485036
22.
Choi
,
S.
,
Cho
,
E.
,
Lee
,
S.
,
Kim
,
Y. W.
, and
Lee
,
D.
,
2011
, “
Development of a High-Efficiency Laminated Dye Sensitized Solar Cell With Condenser Lens
,”
Opt. Express
,
19
(
S4
), pp.
A818
A823
.10.1364/OE.19.00A818
23.
Choi
,
S.
,
Cho
,
E.
,
Lee
,
S.
,
Kim
,
Y. W.
, and
Lee
,
D.
,
2011
, “
Evaluation of Characteristics for Dye-Sensitized Solar Cell With Reflector Applied
,”
Opt. Express
,
19
(
S4
), pp.
A710
A715
.10.1364/OE.19.00A710
24.
Soedergren
,
S.
,
Hagfeldt
,
A.
,
Olsson
,
J.
, and
Lindquist
,
S.-E.
,
1994
, “
Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells
,”
J. Phys. Chem.
,
98
(
21
), pp.
5552
5556
.10.1021/j100072a023
25.
Aboul-Seoud
,
A. K.
, and
Hafez
,
A. S.
,
2008
, “
Analytical Modeling of Dye-Sensitized Solar Cells Under Different Illumination Levels
,” 25th National Radio Science Conference (NRSC 2008), Tanta, Egypt, March 18–20, pp.
1
6
.
26.
Ferber
,
J.
,
Stangl
,
R.
, and
Luther
,
J.
,
1998
, “
An Electrical Model of the Dye-Sensitized Solar Cell
,”
Sol. Energy Mater. Sol. Cells
,
53
(
1–2
), pp.
29
54
.10.1016/S0927-0248(98)00005-1
27.
Penny
,
M.
,
Farrell
,
T.
,
Will
,
G.
, and
Bell
,
J.
,
2004
, “
Modeling Interfacial Charge Transfer in Dye-Sensitized Solar Cells
,”
J. Photochem. Photobiol., A
,
164
(
1-3
), pp.
41
46
.10.1016/j.jphotochem.2003.12.025
28.
Yang
,
D.
,
Park
,
H.
,
Cho
,
S.
,
Kim
,
H.
, and
Chao
,
W.
,
2008
, “
TiO2 Nanotube Based Dye-Sensitized Solar Cells Fabricated by an Efficient Anodic Oxidation for High Surface Area
,”
J. Phys. Chem. Solids
,
69
(
5–6
), pp.
1272
1275
.10.1016/j.jpcs.2007.10.107
29.
Hinsch
,
A.
,
Kroon
,
J. M.
,
Kern
,
R.
,
Uhlendorf
,
I.
,
Holzbock
,
J.
,
Meyer
,
A.
, and
Ferber
,
J.
,
2001
, “
Long-Term Stability of Dye-Sensitised Solar Cells
,”
Prog. Photovoltaics
,
9
, pp.
425
438
.10.1002/pip.397
30.
Kato
,
N.
,
Takeda
,
Y.
,
Higuchi
,
K.
,
Takeichi
,
A.
,
Sudo
,
E.
,
Tanaka
,
H.
,
Motohiro
,
T.
,
Sano
,
T.
, and
Toyoda
,
T.
,
2009
, “
Degradation Analysis of Dye-Sensitized Solar Cell Module After Long-Term Stability Test Under Outdoor Working Condition
,”
Sol. Energy Mater. Sol. Cells
,
93
(
6–7
), pp.
893
897
.10.1016/j.solmat.2008.10.022
31.
Berginc
,
M.
,
Opara Krašovec
,
U.
,
Hočevar
,
M.
, and
Topič
,
M.
,
2008
, “
Performance of Dye-Sensitized Solar Cells Based on Ionic Liquids: Effect of Temperature and Iodine Concentration
,”
Thin Solid Films
,
516
(
20
), pp.
7155
7159
.10.1016/j.tsf.2007.12.003
You do not currently have access to this content.