This paper reports theoretical efficiencies of single Brayton and combined Brayton–Rankine thermodynamic power cycles for distributed solar thermal power generation. Thermodynamic analyses are conducted with a nominal heat input to the cycle of 150 kW and component parameters for a 50 kWe gas microturbine for selected working fluids including air, Ar, CO2, He, H2, and N2 for the Brayton cycle and for the topping cycle of the combined system. Cycle parameters including maximum fluid temperature based on solar concentration ratio, pressure loss, and compressor/turbine efficiencies are then varied to examine their effect on cycle efficiency. C6-fluoroketone, cyclohexane, n-pentane, R-141b, R-245fa, and HFE-7000 are examined as working fluids in the bottoming segment of the combined cycle. A single Brayton cycle is found to reach a peak cycle efficiency of 15.31% with carbon dioxide at design point conditions. Each Brayton cycle fluid is examined as a topping cycle fluid in the combined cycle, being paired with six potential bottoming fluids, resulting in 36 working fluid configurations. The combination of the Brayton topping cycle using carbon dioxide and the Rankine bottoming cycle using R-245fa gives the highest combined cycle efficiency of 21.06%.

References

References
1.
Kolb
,
G. J.
,
Alpert
,
D. J.
, and
Lopez
,
C. W.
,
1991
, “
Insights From the Operation of Solar One and Their Implications for Future Central Receiver Plants
,”
Sol. Energy
,
47
(
1
), pp.
39
47
.10.1016/0038-092X(91)90061-Z
2.
Charabi
,
Y.
, and
Gastli
,
A.
,
2010
, “
GIS Assessment of Large CSP Plant in Duqum, Oman
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
835
841
.10.1016/j.rser.2009.08.019
3.
Moustafa
,
S.
,
Hoefler
,
W.
,
El-Mansy
,
H.
,
Kamal
,
A.
, and
Jarrar
,
D.
,
1984
, “
Design Specifications and Application of a 100 kWe (700 kWth) Cogeneration Solar Power Plant
,”
Sol. Energy
,
32
(
2
), pp.
263
269
.10.1016/S0038-092X(84)80043-2
4.
Romero
,
M.
,
Marcos
,
M. J.
,
Tellez
,
F. M.
,
Blanco
,
M.
,
Fernandez
,
V.
,
Baonza
,
F.
, and
Berger
,
S.
,
1999
, “
Distributed Power From Solar Tower Systems: A MIUS Approach
,”
Sol. Energy
,
67
(
4–6
), pp.
249
264
.10.1016/S0038-092X(00)00059-1
5.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
D.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
J. Sol. Energy Eng.
,
124
, pp.
109
125
.10.1115/1.1467922
6.
Stine
,
W.
, and
Geyer
,
M.
,
2001
, “
Power From the Sun
,” http://www.powerfromthesun.com/book.html
7.
Datta
,
A.
,
Ganguly
,
R.
, and
Sarkar
,
L.
,
2010
, “
Energy and Exergy Analyses of an Externally Fired Gas Turbine (EFGT) Cycle Integrated With Biomass Gasifier for Distributed Power Generation
,”
Energy
,
35
, pp.
341
350
.10.1016/j.energy.2009.09.031
8.
Vera
,
D.
,
Jurado
,
F.
,
de Mena
,
B.
, and
Schories
,
G.
,
2011
, “
Comparison Between Externally Fired Gas Turbine and Gasifier-Gas Turbine System for the Olive Oil Industry
,”
Energy
,
36
(
12
), pp.
6720
6730
.10.1016/j.energy.2011.10.036
9.
Galanti
,
L.
, and
Massargo
,
A. F.
,
2011
, “
Micro Gas Turbine Thermodynamic and Economic Analysis up to 500 kWe Size
,”
Appl. Energy
,
88
, pp.
4795
4802
.10.1016/j.apenergy.2011.06.022
10.
Wee
,
J. H.
,
2011
, “
Molten Carbonate Fuel Cell and Gas Turbine Hybrid Systems as Distributed Energy Resources
,”
Appl. Energy
,
88
, pp.
4252
4263
.10.1016/j.apenergy.2011.05.043
11.
Craig
,
J. D.
, and
Purvis
,
C. R.
,
1999
, “
A Small Scale Biomass Fueled Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
121
(1), pp.
64
67
.10.1115/1.2816313
12.
Angelino
,
G.
,
Invernizzi
,
C.
, and
Molteni
,
G.
,
1998
, “
The Potential Role of Organic Bottoming Rankine Cycles in Steam Power Stations
,”
Proc. Inst. Mech. Eng. Part A
,
213
(2), pp.
75
81
.10.1243/0957650991537446
13.
Liu
,
B. T.
,
Chien
,
K. H.
, and
Wang
,
C. C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
, pp.
1207
1217
.10.1016/j.energy.2004.01.004
14.
Chacartegui
,
R.
,
Sanchez
,
D.
,
Jimenez–Espadafor
,
F.
,
Munoz
,
A.
, and
Sanchez
,
T.
,
2008
, “
Analysis of Intermediate Temperature Combined Cycles With a Carbon Dioxide Topping Cycle
,” ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, June 9–13,
ASME
Paper No. GT2008-51053.10.1115/GT2008-51053
15.
Invernizzi
,
C.
,
Iora
,
P.
, and
Silva
,
P.
,
2007
, “
Bottoming Micro-Rankine Cycles for Micro-Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
100
110
.10.1016/j.applthermaleng.2006.05.003
16.
Kuo
,
C. R.
,
Hsu
,
S. W.
,
Chang
,
K. H.
, and
Wang
,
C. C.
,
2011
, “
Analysis of a 50 kW Organic Rankine Cycle System
,”
Energy
,
36
(
10
), pp.
5877
5885
.10.1016/j.energy.2011.08.035
17.
Lemort
,
V.
,
Quoilin
,
S.
,
Cuevas
,
C.
, and
Lebrun
,
J.
,
2009
, “
Testing and Modeling a Scroll Expander Integrated Into an Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3094
3102
.10.1016/j.applthermaleng.2009.04.013
18.
Quoilin
,
S.
,
Lemort
,
V.
, and
Lebrun
,
J.
,
2010
, “
Experimental Study and Modeling of an Organic Rankine Cycle Using Scroll Expander
,”
Appl. Energy
,
87
(
4
), pp.
1260
1268
.10.1016/j.apenergy.2009.06.026
19.
Pye
,
J.
,
Morrison
,
G.
, and
Behnia
,
M.
,
2006
, “
Pressure Drops for Direct Steam Generation in In-Line Focus Solar Thermal Systems
,” ANZSES 2006, Canberra, Australia, September 13–15.
20.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
21.
Klein
,
S. A.
,
2012
,
Engineering Equation Solver (EES) for Microsoft Windows Operating System: Academic Professional Version
, F-Chart Software, Madison, WI.
22.
Tegeler
,
C.
,
Span
,
R.
, and
Wagner
,
W.
,
1999
, “
Eine neue Fundamental-gleichung für das fluide Zustandsgebiet von Argon für Temperaturen von der Schmelzlinie bis 700 K und Drücke bis 1000 MPa” (Translation: “A New Equation of State for Argon Covering the Fluid Region for Temperatures From the Melting Line to 700 K at Pressures Up to 1000 MPa
”), Fortschritt-Berichte VDI, Reihe 3: Verfahrenstechnik Nr. 480.
23.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D.
,
2000
, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
3
), pp.
331
385
.10.1063/1.1285884
24.
Span
,
R.
,
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Wagner
,
W.
, and
Yokozeki
,
A.
,
2000
, “
A Reference Equation of State for the Thermodynamic Properties of Nitrogen From 63.151 to 1000 K and Pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
6
), pp.
1361
1434
.10.1063/1.1349047
25.
McCarty
,
R. D.
, and
Arp
,
V. D.
,
1990
, “
A New Wide Range Equation of State for Helium
,”
Adv. Cryog. Eng.
,
35
, pp.
1465
1475
.
26.
Leachman
,
J. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Lemmon
,
E. W.
,
2009
, “
Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen
,”
J. Phys. Chem. Ref. Data
,
38
, p.
721
.10.1063/1.3160306
27.
Penoncello
,
S. G.
,
Jacobsen
,
R. T.
, and
Goodwin
,
A. R. H.
,
1995
, “
A Thermodynamic Property Formulation for Cyclohexane
,”
Int. J. Thermophys.
,
16
(
2
), pp.
519
529
.10.1007/BF01441918
28.
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Lemmon
,
E. W.
,
1997
,
Thermodynamic Properties of Cryogenic Fluids
,
Plenum Press
,
New York
.
29.
Martin
,
J. J.
, and
Hou
,
Y. C.
,
1955
, “
Development of an Equation of State for Gases
,”
AIChE J.
,
1
(
142
), pp.
142
151
.10.1002/aic.690010203
30.
Lemmon
,
E. W.
, and
Span
,
R.
,
2006
, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
,
51
(
3
), pp.
785
850
.10.1021/je050186n
31.
Beerbaum
,
S.
, and
Weinrebe
,
G.
,
2000
, “
Solar Thermal Power Generation in India–A Techno-Economic Analysis
,”
Renewable Energy
,
21
, pp.
153
174
.10.1016/S0960-1481(00)00006-9
32.
Lovegrove
,
K.
, and
Luzzi
,
A.
,
2002
, “
Solar Thermal Power Systems
,”
Encyclopedia of Physical Science and Technology
, 3rd ed., Vol.
15
,
R. A.
Meyers
, ed.,
Academic Press
,
San Diego, CA
, pp.
223
235
.
33.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science & Technology
, 3rd ed., Vol.
15
,
R. A.
Meyers
, ed.,
Academic Press
,
New York
, pp.
237
256
.
34.
Kennedy
,
C. E.
,
2002
, “
Review of Mid- to High-Temperature Solar Selective Absorber Materials
,” NREL/TP-520-31267.
35.
Montes
,
M. J.
,
Abanades
,
A.
, and
Martinez–Val
,
J. M.
,
2009
, “
Performance of a Direct Steam Generation Solar Thermal Power Plant for Electricity Production as a Function of the Solar Multiple
,”
Sol. Energy
,
83
, pp.
679
689
.10.1016/j.solener.2008.10.015
36.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
37.
Bathie
,
W. W.
,
1996
,
Fundamentals of Gas Turbines
, 2nd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
38.
Angelino
,
G.
, and
Invernizzi
,
C.
,
2001
, “
Real Gas Brayton Cycles for Organic Working Fluids
,”
Proc. Inst. Mech. Eng., Part A
,
215
, pp.
27
38
.10.1243/0957650011536543
39.
Wagner
,
W.
, and
Pruss
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
, pp.
387
535
.10.1063/1.1461829
You do not currently have access to this content.