Heat transfer is predicted for a solid-solid heat recuperation system employed in a novel directly-irradiated solar thermochemical reactor realizing a metal oxide based nonstoichiometric redox cycle for production of synthesis gas from water and carbon dioxide. The system is designed for continuous operation with heat recuperation from a rotating hollow cylinder of a porous reactive material to a counter-rotating inert solid cylinder via radiative transfer. A transient heat transfer model coupling conduction, convection, and radiation heat transfer predicts temperatures, rates of heat transfer, and the effectiveness of heat recovery. Heat recovery effectiveness of over 50% is attained within a parametric study of geometric and material parameters corresponding to the design of a two-step solar thermochemical reactor.

References

References
1.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
,
R. A.
Meyers
, ed.,
Academic
,
Burlington, VT
,
15
, pp.
237
256
.
2.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
, pp.
567
597
.10.1016/S0360-1285(03)00059-5
3.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
, pp.
467
475
.10.1016/0038-092X(77)90102-5
4.
Diver
,
R.
,
Miller
,
J.
,
Allendorf
,
M.
,
Siegel
,
N.
, and
Hogan
,
R.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
, p.
041001
.10.1115/1.2969781
5.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Evans
,
L. R.
,
Siegel
,
N. P.
, and
Stuecker
,
J. N.
,
2008
, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
, pp.
4714
4728
.10.1007/s10853-007-2354-7
6.
Kodama
,
T.
,
Nakamuro
,
Y.
, and
Mizuno
,
T.
,
2006
, “
A Two-Step Themochemical Water Splitting by Iron-Oxide on Stabilized Zirconia
,”
ASME J. Sol. Energy Eng.
,
128
, pp.
3
7
.10.1115/1.1878852
7.
Kodama
,
T.
,
Kondoh
,
Y.
,
Yamamoto
,
R.
,
Andou
,
H.
, and
Satou
,
N.
,
2005
, “
Thermochemical Hydrogen Production by a Redox System of ZrO2-Supported Co(II)-Ferrite
,”
Sol. Energy
,
78
, pp.
623
631
.10.1016/j.solener.2004.04.008
8.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
, pp.
1611
1623
.10.1016/j.solener.2005.12.005
9.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
, pp.
3269
3294
.10.1098/rsta.2010.0114
10.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
, pp.
4163
4173
.10.1007/s10853-010-4506-4
11.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
, pp.
1797
1801
.10.1126/science.1197834
12.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
, pp.
2287
2293
.10.1021/ef060581z
13.
Venstrom
,
L. J.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2012
, “
The Effect of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Sol. Energy Eng.
,
134
, p.
011005
.10.1115/1.4005119
14.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Sygas or Methane From H2O and CO2
,”
ChemSusChem
,
2
, pp.
735
739
.10.1002/cssc.200900138
15.
Kaneko
,
H.
,
Miura
,
T.
,
Ishihara
,
H.
,
Taku
,
S.
,
Yokoyama
,
T.
,
Nakajima
,
H.
, and
Tamaura
,
Y.
,
2007
, “
Reactive Ceramics of CeO2–MeOx (M = Mn, Fe, Ni, Cu) for H2 Generation by Two-Step Water Splitting Using Concentrated Solar Thermal Energy
,”
Energy
,
32
, pp.
656
663
.10.1016/j.energy.2006.05.002
16.
Petkovich
,
N.
,
Rudisill
,
S.
,
Venstrom
,
L. J.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1-xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem.
,
115
(43)
, pp.
21022
21033
.10.1021/jp2071315
17.
Meng
,
Q.-L.
,
Lee
,
C.
,
Toshihiko
,
I.
,
Kaneko
,
H.
, and
Tamaura
,
Y.
,
2011
, “
Reactivity of Ceo2-Based Ceramics for Solar Hydrogen Production Via a Two-Step Water-Splitting Cycle With Concentrated Solar Energy
,”
Int. J. Hydrogen Energy
,
36
, pp.
13435
13441
.10.1016/j.ijhydene.2011.07.089
18.
Kaneko
,
H.
,
Taku
,
S.
, and
Tamaura
,
Y.
,
2011
, “
Reduction Reactivity of CeO2–ZrO2 Oxide Under High O2 Partial Pressure in Two-Step Water Splitting Process
,”
Sol. Energy
,
85
, pp.
2321
2330
.10.1016/j.solener.2011.06.019
19.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstiochiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
, pp.
1213
1222
.10.1016/0022-3697(75)90192-4
20.
Roeb
,
M.
,
Säck
,
J. P.
,
Rietbrock
,
P.
,
Prahl
,
C.
,
Schreiber
,
H.
,
Neises
,
M.
,
de Oliveira
,
L.
,
Graf
,
D.
,
Ebert
,
M.
,
Reinalter
,
W.
,
Meyer-Grünefeldt
,
M.
,
Sattler
,
C.
,
Lopez
,
A.
,
Vidal
,
A.
,
Elsberg
,
A.
,
Stobbe
,
P.
,
Jones
,
D.
,
Steele
,
A.
,
Lorentzou
,
S.
,
Pagkoura
,
C.
,
Zygogianni
,
A.
,
Agrafiotis
,
C.
, and
Konstandopoulos
,
A. G.
,
2011
, “
Test Operation of a 100 kW Pilot Plant for Solar Hydrogen Production From Water on a Solar Tower
,”
Sol. Energy
,
85
, pp.
634
644
.10.1016/j.solener.2010.04.014
21.
Lapp
,
J. L.
,
Lipiński
,
W. L.
, and
Davidson
,
J. H.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
, pp.
591
600
.10.1016/j.energy.2011.10.045
22.
Chen
,
K. S.
, and
Hogan
,
R. E.
,
2009
, “
A Two-Phase Model for Solar Thermochemical Water Splitting with FeO/Fe3O4
,”
Proceedings of ASME 2009 3rd International Conference on Energy Sustainability
,
San Francisco, CA
, July 19–23,
ASME
Paper No. ES2009-90228. 10.1115/ES2009-90228
23.
Diver
,
R. B.
,
Siegel
,
N. P.
,
Miller
,
J. E.
, and
Moss
,
T. A.
,
2010
, “
Testing of a CR5 Solar Thermochemical Heat Engine Prototype
,”
Proceedings of ASME 2010 4th International Conference on Energy Sustainability
,
Phoenix, AZ
, May 17–22,
ASME
Paper No. ES2010-90093.10.1115/ES2010-90093
24.
Žukauskas
,
A.
,
1972
, “
Heat Transfer from Tubes in Cross Flow
,”
Advances in Heat Transfer
, Vol.
8
,
Hartnett
,
J. P.
, and
Irvine
,
T. F.
, eds.,
Academic
,
New York
, pp.
93
160
.
25.
Rosseland
,
S.
,
1936
,
Theoretical Astrophysics: Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes
,
Clarendon
,
Oxford
, UK.
26.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic
,
San Diego
.
27.
Ganesan
,
K.
,
Dombrovsky
,
L.
, and
Lipiński
,
W.
,
2012
, “
A Novel Methodology to Determine Spectral Radiative Properties of Ceria Ceramics
,”
Proceedings of the Eurotherm Seminar 95—Computational Thermal Radiation in Participating Media IV
,
Nancy
, France, April 18–20.
You do not currently have access to this content.