An investigation into the effect of different lengths of intermittent light/dark periods on the photolytic and photocatalytic disinfection of Escherichia coli was undertaken at laboratory scale. Water containing E. coli was pumped around a laboratory scale compound parabolic collector and exposed to UV light in the presence and absence of titanium dioxide photocatalyst. By darkening sections of the reactor tubing, the illumination time and frequency were varied. The disinfection kinetics were studied, as well as the effective disinfection time received for each configuration. For photolysis, it was seen that the number of dark and light periods had very little effect on disinfection, once the illuminated area was kept constant, although having fewer light/dark interfaces was slightly favorable. It was also seen that an increase in the illuminated area reduced the efficiency of disinfection in relation to cumulative UV dose. In photocatalytic tests, it was found that increasing the frequency of light/dark periods, while keeping the illuminated area constant, had a beneficial effect on disinfection, both in terms of time to method detection limit (MDL) and effective disinfection time (EDT). In post irradiation tests, where samples were kept in the dark for 48 h after illumination, photocatalysis was seen to have a distinct advantage over photolysis, with total inactivation achieved within 60 min for all configurations, as opposed to a minimum of 180 min in photolytic tests. From an engineering design perspective, the above findings could lead to smaller, more efficient reactor configurations. The implications that more interruptions improve photocatalytic disinfection could be implemented by introducing light and dark periods into photocatalytic reactor systems, subject to further testing.

References

References
1.
Downes
,
A.
, and
Blunt
,
T. P.
,
1877
, “
Researches on the Effect of Light Upon Bacteria and Other Organisms
,”
Proc. R. Soc. London
,
26
, pp.
488
500
.10.1098/rspl.1877.0068
2.
Blake
,
D. M.
,
Maness
,
P. C.
,
Huang
,
Z.
,
Wolfrum
,
J.
, and
Huang
,
J.
,
1999
, “
Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells
,”
Sep. Purif. Methods
,
28
, pp.
1
50
.10.1080/03602549909351643
3.
Oates
,
P. M.
,
Shanahan
,
P.
, and
Polz
,
M. F.
,
2003
, “
Solar Disinfection (SODIS) for Point-of-Use Water Treatment in Haiti and Simulation of Solar Radiation Global for Global SODIS Assessment
,”
Water Res.
,
37
, pp.
47
54
.10.1016/S0043-1354(02)00241-5
4.
Wegelin
,
M.
,
Canonica
,
S.
,
Mechsner
,
K.
,
Pesaro
,
F.
, and
Metzler
,
A.
,
1994
, “
Solar Water Disinfection: Scope of the Process and Analysis of Radiation Experiments
,”
J. Water Supply: Res. Technol.-AQUA
,
43
, pp.
154
169
.
5.
Gill
,
L. W.
, and
McLoughlin
,
O. A.
,
2007
, “
Solar Disinfection Kinetic Design Parameters for Continuous Flow Reactors
,”
ASME J. Sol. Energy Eng.
,
129
, pp.
111
118
.10.1115/1.2391316
6.
Matsunaga
,
T.
,
1985
, “
Sterilization With Particulate Photosemiconductor
,”
J. Antibacterial Antifungal Agents
,
13
, pp.
211
220
.
7.
Block
,
S. S.
,
Seng
,
V. P.
, and
Goswami
,
D. W.
,
1997
, “
Chemically Enhanced Sunlight for Killing Bacteria
,”
ASME J. Sol. Energy Eng.
,
119
, pp.
85
91
.10.1115/1.2871858
8.
Ibáñez
,
J. A.
,
Litter
,
M. I.
, and
Pizarro
,
R. A.
,
2003
, “
Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae—Comparative Study With Other Gram (-) Bacteria
,”
J. Photochem. Photobiol., A
,
157
, pp.
81
85
.10.1016/S1010-6030(03)00074-1
9.
Kühn
,
K. P.
,
Chaberny
,
I. F.
,
Massholder
,
K.
,
Stickler
,
M.
,
Benz
,
V. W.
,
Sonntag
,
H.-G.
, and
Erdinger
,
L.
,
2003
, “
Disinfection of Surfaces by Photocatalytic Oxidation With Titanium Dioxide and UVA Light
,”
Chemosphere
,
53
, pp.
71
77
.10.1016/S0045-6535(03)00362-X
10.
Benabbou
,
A. K.
,
Derriche
,
Z.
,
Felix
,
C.
,
Lejeune
,
P.
, and
Guillard
,
C.
,
2007
, “
Photocatalytic Inactivation of Escherichia coli
,”
Appl. Catal., B
,
76
, pp.
257
263
.10.1016/j.apcatb.2007.05.026
11.
Sunada
,
K.
,
Watanabe
,
T.
, and
Hashimoto
,
K.
,
2003
, “
Studies on Photokilling of Bacteria on. TiO2 Thin Film
,”
J. Photochem. Photobiol., A
,
156
, pp.
227
233
.10.1016/S1010-6030(02)00434-3
12.
Lanao
,
M.
,
Ormad
,
M. P.
,
Mosteo
,
R.
, and
Ovelleiro
,
J. L.
,
2012
, “
Inactivation of Enterococcus sp. by Photolysis and TiO2 Photocatalysis With H2O2 in Natural Water
,”
Sol. Energy
,
86
(
1
), pp.
619
625
.10.1016/j.solener.2011.11.007
13.
Dunlop
,
P. S. M.
,
Ciavola
,
M.
,
Rizzo
,
L.
, and
Byrne
,
J. A.
,
2011
, “
Inactivation and Injury Assessment of Escherichia coli During Solar and Photocatalytic Disinfection in LDPE Bags
,”
Chemosphere
,
85
(
7
), pp.
1160
1166
.10.1016/j.chemosphere.2011.09.006
14.
Van Grieken
,
R.
,
Marugán
,
J.
,
Pablos
,
C.
,
Furones
,
L.
, and
López
,
A.
,
2010
, “
Comparison Between the Photocatalytic Inactivation of Gram-Positive E. faecalis and Gram-Negative E. coli Faecal Contamination Indicator Microorganisms
,”
Appl. Catal., B
,
100
(
1–2
), pp.
212
220
.10.1016/j.apcatb.2010.07.034
15.
Watts
,
R. J.
,
Kong
,
S.
,
Orr
,
M. P.
,
Miller
,
G. C.
, and
Henry
,
B. E.
,
1995
, “
Photocatalytic Inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent
,”
Water Res.
,
29
(
1
), pp.
95
100
.10.1016/0043-1354(94)E0122-M
16.
Sjogren
,
J. C.
, and
Sierka
,
R. A.
,
1994
, “
Inactivation of Phage MS2 by Iron-Aided Titanium Dioxide Photocatalysis
,”
Appl. Environ. Microbiol.
,
60
(
1
), pp.
344
347
.
17.
Laot
,
N.
,
Narkis
,
N.
,
Neeman
,
I.
,
Bilanoviç
,
D.
, and
Armon
,
R.
,
1999
, “
TiO2 Photocatalytic Inactivation of Selected Microorganisms Under Various Conditions: Sunlight, Intermittent and Variable Irradiation Intensity, CDS Supplementation and Entrapment of TiO2 into Sol-Gel
,”
J. Adv. Oxid. Technol.
,
4
(
1
), pp.
97
102
.
18.
Liga
,
M. V.
,
Bryant
,
E. L.
,
Colvin
,
V. L.
, and
Li
,
Q.
,
2011
, “
Virus Inactivation by Silver Doped Titanium Dioxide Nanoparticles for Drinking Water Treatment
,”
Water Res.
,
45
(
2
), pp.
535
544
.10.1016/j.watres.2010.09.012
19.
Dunlop
,
P. S. M.
,
McMurray
,
T. A.
,
Hamilton
,
J. W. J.
, and
Byrne
,
A.
,
2008
, “
Photocatalytic Inactivation of Clostridium Perfringens Spores on TiO2 Electrodes
,”
J. Photochem. Photobiol., A
,
196
(
1
), pp.
113
119
.10.1016/j.jphotochem.2007.11.024
20.
Méndez-Hermida
,
F.
,
Ares-Mazás
,
E.
,
McGuigan
,
K. G.
,
Boyle
,
M.
,
Sichel
,
C.
, and
Fernández-Ibáñez
,
P.
,
2007
, “
Disinfection of Drinking Water Contaminated With Cryptosporidium Parvum Oocysts Under Natural Sunlight and Using the Photocatalyst TiO2
,”
J. Photochem. Photobiol., B
,
88
, pp.
105
111
.10.1016/j.jphotobiol.2007.05.004
21.
Lonnen
,
J.
,
Kilvington
,
S.
,
Kehoe
,
S. C.
,
Al-Touati
,
F.
, and
McGuigan
,
K. G.
,
2005
, “
Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water
,”
Water Res.
,
39
, pp.
877
883
.10.1016/j.watres.2004.11.023
22.
Sunnotel
,
O.
,
Verdoold
,
R.
,
Dunlop
,
P. S. M.
,
Snelling
,
W. J.
,
Lowery
,
C. J.
,
Dooley
,
J. S. G.
,
Moore
,
J. E.
, and
Byrne
,
J. A.
,
2010
, “
Photocatalytic Inactivation of Cryptosporidium Parvum on Nanostructured Titanium Dioxide Films
,”
J. Water Health
,
8
(
1
), pp.
83
91
.10.2166/wh.2009.204
23.
Sichel
,
C.
,
Tello
,
J.
,
de Cara
,
M.
, and
Fernández-Ibáñez
,
P.
,
2007
, “
Effect of UV—Intensity and Dose on the Photocatalytic Disinfection of Bacteria and Fungi Under Natural Sunlight
,”
Catal. Today
,
129
, pp.
152
160
.10.1016/j.cattod.2007.06.061
24.
Maness
,
P. C.
,
Smolinski
,
S.
,
Blake
,
D. M.
,
Huang
,
Z.
,
Wolfrum
,
E. J.
, and
Jacoby
,
W. A.
,
1999
, “
Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism
,”
Appl. Environ. Microbiol.
,
65
(
9
), pp.
4094
4098
.
25.
Cho
,
M.
,
Chung
,
H.
,
Choi
,
W.
, and
Yoon
,
J.
,
2004
, “
Linear Correlation Between Inactivation of E. coli and OH Radical Concentration in TiO2 Photocatalytic Disinfection
,”
Water Res.
,
38
, pp.
1069
1077
.10.1016/j.watres.2003.10.029
26.
Pigeot-Rémy
,
S.
,
Simonet
,
F.
,
Errazuriz-Cerda
,
E.
,
Lazzaroni
,
J. C.
,
Atlan
,
D.
, and
Guillard
,
C.
,
2011
, “
Photocatalysis and Disinfection of Water: Identification of Potential Targets
,”
Appl. Catal., B
,
104
(
3–4
), pp.
390
398
.10.1016/j.apcatb.2011.03.001
27.
McLoughlin
,
O. A.
,
Kehoe
,
S. C.
,
McGuigan
,
K. G.
,
Duffy
,
E. F.
,
Al Touati
,
F.
,
Gernjak
,
W.
,
Oller Alberola
,
I.
,
Malato Rodriguez
,
S.
, and
Gill
,
L. W.
,
2004
, “
Solar Disinfection of Contaminated Water: A Comparison of Three Small-Scale Reactors
,”
Sol. Energy
,
77
(
5
), pp.
657
664
.10.1016/j.solener.2004.07.004
28.
Navntoft
,
C.
,
Araujo
,
P.
,
Litter
,
M. I.
,
Apella
,
M. C.
,
Fernández
,
D.
,
Puchulu
,
M. E.
,
Hidalgo
,
M.
del
V.
, and
Blesa
,
M. A.
,
2007
, “
Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, Tucumán, Argentina
,”
J. Sol. Energy Eng.
,
129
, pp.
127
134
.10.1115/1.2391318
29.
Chapelon
,
A.
, and
Herrmann
,
J. M.
,
2004
, “
The AQUACAT Project/Detoxification and Potabilisation of Water by Solar Photocatalysis in Semi-Arid Countries
,”
Appl. Catal., B
,
50
, pp.
1
5
.10.1016/j.apcatb.2003.10.009
30.
Gill
,
L. W.
, and
Price
,
C.
,
2010
, “
Preliminary Observations of a Continuous Flow Solar Disinfection System for a Rural Community in Sub-Saharan Africa
,”
Energy
,
35
, pp.
4607
4611
.10.1016/j.energy.2010.01.008
31.
Gelover
,
S.
,
Gómez
,
L.A.
,
Reyes
,
K.
, and
Teresa Leal
,
M.
,
2006
, “
A Practical Demonstration of Water Disinfection Using TiO2 Films and Sunlight
,”
Water Res.
,
40
, pp.
3274
3280
.10.1016/j.watres.2006.07.006
32.
Rincón
,
A.-G.
, and
Pulgarin
,
C.
,
2007
, “
Absence of E-Coli Regrowth After Fe3+ And TiO2 Solar Photoassisted Disinfection of Water In CPC Solar Photoreactor
,”
Catal. Today
,
124
, pp.
204
214
.10.1016/j.cattod.2007.03.039
33.
Berney
,
M.
,
Weilenmann
,
H.-U.
, and
Egli
,
T.
,
2007
, “
Adaptation to UVA Radiation of E. coli Growing in Continuous Culture
,”
J. Photochem. Photobiol., B
,
86
, pp.
149
159
.10.1016/j.jphotobiol.2006.08.014
34.
McLoughlin
,
O. A.
,
Fernandez
,
P.
,
Gernjak
,
W.
,
Malato
,
S.
, and
Gill
,
L. W.
,
2004
, “
Photocatalytic Disinfection of Water Using Low Cost Compound Parabolic Collectors
,”
Sol. Energy
,
77
(
5
), pp.
625
633
.10.1016/j.solener.2004.05.017
35.
Fernández
,
P.
,
Blanco
,
J.
,
Sichel
,
C.
, and
Malato
,
S.
,
2005
, “
Water Disinfection by Solar Photocatalysis Using Compound Parabolic Collectors
,”
Catal. Today
,
101
, pp.
345
352
.10.1016/j.cattod.2005.03.062
36.
Rincón
,
A. G.
, and
Pulgarin
,
C.
,
2003
, “
Photocatalytical Inactivation of E. coli: Effect of (Continuous-Intermittent) Light Intensity and of (Suspended-Fixed) TiO2 Concentration
,”
Appl. Catal., B
,
44
, pp.
263
284
.10.1016/S0926-3373(03)00076-6
37.
Pham
,
H. N.
,
McDowell
,
T.
, and
Wilkins
,
E.
,
1995
, “
Photocatalytically-Mediated Disinfection of Water Using TiO2 as a Catalyst and Spore-Forming Bacillus pumilus as a Model
,”
J. Environ. Sci. Health
,
A30
(
3
), pp.
627
636
.10.1080/10934529509376221
38.
Gumy
,
D.
,
Rincón
,
A. G.
,
Hajdu
,
R.
, and
Pulgarin
,
C.
,
2006
, “
Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed TiO2 Catalysts Study
,”
Sol. Energy
,
80
(
10
), pp.
1376
1381
.10.1016/j.solener.2005.04.026
39.
Sichel
,
C.
,
Blanco
,
J.
,
Malato
,
S.
, and
Fernández-Ibáñez
,
P.
,
2007
, “
Effects of Experimental Conditions on E. coli Survival During Solar Photocatalytic Water Disinfection
,”
J. Photochem. Photobiol., A
,
189
, pp.
239
246
.10.1016/j.jphotochem.2007.02.004
40.
Rincón
,
A.-G.
, and
Pulgarin
,
C.
,
2004
, “
Field Solar E. coli Inactivation in the Absence and Presence of TiO2: Is UV Solar Dose an Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
,
77
, pp.
635
648
.10.1016/j.solener.2004.08.002
41.
Berney
,
M.
,
Weilenmann
,
H.-U.
,
Simonetti
,
A.
, and
Egli
,
T.
,
2006
, “
Efficacy of Solar Disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium, and Vibrio cholera
,”
J. Appl. Microbiol.
,
101
, pp.
828
836
.10.1111/j.1365-2672.2006.02983.x
42.
Rincón
,
A. G.
, and
Pulgarin
,
C.
,
2004
, “
Bactericidal Action of Illuminated TiO2 on Pure E. coli and Natural Bacteria Consortia: Post-Irradiation Events in the Dark Assessment of the Effective Disinfection Time
,”
Appl. Catal., B
,
49
(
2
), pp.
99
112
.10.1016/j.apcatb.2003.11.013
You do not currently have access to this content.