Nanoparticle suspensions are known to offer a variety of benefits for thermal transport and energy conversion. Of particular relevance here are the vast changes to the radiative properties due to the plasmonic nanostructures' large extinction cross section at the corresponding surface plasmon resonance (SPR) wavelength. Recent papers have showed that dielectric core/metallic shell nanoparticles yielded a plasmon resonance wavelength tunable from visible to infrared by changing the ratio of core radius to the total radius. Therefore, we are interested in developing a dispersion of core-shell multifunctional nanoparticles capable of dynamically changing their volume ratio and thus their spectral radiative properties. This paper investigates the surface plasmon resonance effect, wavelength tuning ranges for different metallic shell nanoparticles, and explores the solar-weighted efficiencies of corresponding core-shell nanoparticle suspensions. Through our electrostatic model, we estimate a red-shift in the plasmon resonance peak from a wavelength of about 600 nm to around 1400 nm for Au coated silicon core nanoparticles. Using core-shell nanoparticle dispersions, it is possible to create efficient spectral solar absorption fluids and design materials for applications which require variable spectral absorption or scattering.

References

References
1.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
2.
Das
,
S. K.
, and
Choi
,
S. U. S.
,
2009
, “
A Review of Heat Transfer in Nanofluids
,”
Adv. Heat Transfer Nanofluids
,
41
(
08
), pp.
81
197
.10.1016/S0065-2717(08)41002-X
3.
Timofeeva
,
E. V.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2011
, “
Nanofluids for Heat Transfer: An Engineering Approach
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
182
.10.1186/1556-276X-6-182
4.
Glässl
,
M.
,
Hilt
,
M.
, and
Zimmermann
,
W.
,
2011
, “
Convection in Nanofluids With a Particle-Concentration-Dependent Thermal Conductivity
,”
Phys. Rev. E–Stat., Nonlinear Soft Matter Phys.
,
83
(
4 Pt 2
), p.
046315
.10.1103/PhysRevE.83.046315
5.
Taylor
,
R. A.
,
Phelan
,
P.
,
Rosengarten
,
G.
,
Gunawan
,
A.
,
Lv
,
W.
,
Otanicar
,
T.
, and
Prasher
,
R. S.
,
2012
, “
Critical Review of The Novel Applications and Uses of Nanofluids
,”
Proceedings of the 3rd International Conference on Micro/Nanoscale Heat & Mass Transfer
,
Atlanta, GA
, March 3–6, ASME Paper No. MNHMT2012-75189.
6.
Buongiorno
,
J.
,
Hu
,
L.-W.
,
Kim
,
S. J.
,
Hannink
,
R.
,
Truong
,
B. A. O.
, and
Forrest
,
E.
,
2008
, “
Nanofluids for Enhanced Economics and Safety of Nuclear Reactors: An Evaluation of the Potential Features, Issues, and Research Gaps
,”
Nucl. Technol.
,
162
(
1
), pp.
80
91
.
7.
Ferrari
,
M.
,
2005
, “
Cancer Nanotechnology: Opportunities and Challenges
,”
Nat. Rev. Cancer
,
5
(
3
), pp.
161
171
.10.1038/nrc1566
8.
Tyagi
,
H.
,
Phelan
,
P.
, and
Prasher
,
R. S.
,
2009
, “
Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector
,”
J. Sol. Energy Eng.
,
131
(
4
), p.
041004
.10.1115/1.3197562
9.
Kelly
,
K. L.
,
Coronado
,
E.
,
Zhao
,
L. L.
, and
Schatz
,
G.
,
2003
, “
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment
,”
J. Phys. Chem. B
,
11
(
3
), pp.
668
677
.10.1021/jp026731y
10.
Cole
,
J. R.
, and
Halas
,
N. J.
,
2006
, “
Optimized Plasmonic Nanoparticle Distributions for Solar Spectrum Harvesting
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153120
.10.1063/1.2360918
11.
Kumar
,
S.
, and
Tien
,
C. L.
,
1990
, “
Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film
,”
J. Sol. Energy Eng.
,
112
(
4
), p.
293
.10.1115/1.2929937
12.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Prasher
,
R. S.
,
Rosengarten
,
G.
, and
Taylor
,
R. A.
,
2010
, “
Nanofluid-Based Direct Absorption Solar Collector
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033102
.10.1063/1.3429737
13.
Lenert
,
A.
, and
Wang
,
E. N.
,
2012
, “
Optimization of Nanofluid Volumetric Receivers for Solar Thermal Energy Conversion
,”
Sol. Energy
,
86
(
1
), pp.
253
265
.10.1016/j.solener.2011.09.029
14.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Walker
,
C. A.
,
Nguyen
,
M.
,
Trimble
,
S.
, and
Prasher
,
R. S.
,
2011
, “
Applicability of Nanofluids in High Flux Solar Collectors
,”
J. Renewable Sustainable Energy
,
3
(
2
), p.
023104
.10.1063/1.3571565
15.
Halas
,
N.
,
2002
, “
The Optical Properties of Nanoshells
,”
Opt. Photonics News
,
13
(
8
), pp.
26
30
.10.1364/OPN.13.8.000026
16.
Ma
,
H.
, and
Dai
,
L. L.
,
2009
, “
Synthesis of Polystyrene-Silica Composite Particles via One-Step Nanoparticle-Stabilized Emulsion Polymerization
,”
J. Colloid Interface Sci.
,
333
(
2
), pp.
807
811
.10.1016/j.jcis.2009.02.007
17.
Lee
,
B. J.
,
Park
,
K.
,
Walsh
,
T.
, and
Xu
,
L.
,
2012
, “
Radiative Heat Transfer Analysis in Plasmonic Nanofluids for Direct Solar Thermal Absorption
,”
J. Sol. Energy Eng.
,
134
(
2
), p.
021009
.10.1115/1.4005756
18.
Jain
,
P. K.
,
Huang
,
X.
,
El-Sayed
,
I. H.
, and
El-Sayed
,
M. A.
,
2007
, “
Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems
,”
Plasmonics
,
2
(
3
), pp.
107
118
.10.1007/s11468-007-9031-1
19.
Neeves
,
A. E.
, and
Birnboim
,
M. H.
,
1989
, “
Composite Structures for the Enhancement of Nonlinear-Optical Susceptibility
,”
J. Opt. Soc. Am. B
,
6
(
4
), p.
787
796
.10.1364/JOSAB.6.000787
20.
Aden
,
A. L.
, and
Kerker
,
M.
,
1951
, “
Scattering of Electromagnetic Waves From Two Concentric Spheres
,”
J. Appl. Phys.
,
22
(
1
), pp.
1242
1246
.10.1063/1.1699834
21.
Averitt
,
R. D.
,
Westcott
,
S. L.
, and
Halas
,
N. J.
,
1999
, “
Linear Optical Properties of Gold Nanoshells
,”
J. Opt. Soc. Am. B
,
16
(
10
), pp.
1824
1832
.10.1364/JOSAB.16.001824
22.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
,
2nd ed.
,
Academic Press
,
New York
.
23.
Hao
,
E.
,
Li
,
S.
,
Bailey
,
R. C.
,
Zou
,
S.
,
Schatz
,
G. C.
, and
Hupp
,
J. T.
,
2004
, “
Optical Properties of Metal Nanoshells
,”
J. Phys. Chem. B
,
108
(
4
), pp.
1224
1229
.10.1021/jp036301n
24.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1998
,
Absorption and Scattering of Light by Small Particles
,
Wiley-VCH Verlag GmbH
,
Weinheim, Germany
.
25.
Averitt
,
R. D.
,
Sarkar
,
D.
, and
Halas
,
N. J.
,
1997
, “
Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth
,”
Phys. Rev. Lett.
,
78
(
22
), pp.
4217
4220
.10.1103/PhysRevLett.78.4217
26.
Palik
,
E. D.
,
1985
,
Handbook of Optical Constants of Solids
,
Academic Press
,
New York
.
27.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T. P.
,
Adrian
,
R. J.
, and
Prasher
,
R. S.
,
2011
, “
Nanofluid Optical Property Characterization: Towards Efficient Direct Absorption Solar Collectors
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
225
.10.1186/1556-276X-6-225
28.
Prasher
,
R. S.
,
2007
, “
Thermal Radiation in Dense Nano- and Microparticulate Media
,”
J. Appl. Phys.
,
102
(
7
), p.
074316
.10.1063/1.2794703
29.
Kreibig
,
U.
, and
Vollmer
,
V.
,
1995
,
Optical Properties of Metal Clusters
(
Springer Series in Materials Science
),
Springer, Berlin
.
30.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
.10.1103/PhysRevB.6.4370
31.
Kittel
,
C.
,
1986
,
Introduction to Solid State Physics
,
Wiley
,
New York
.
32.
Schelm
,
S.
, and
Smith
,
G. B.
,
2005
, “
Evaluation of the Limits of Resonance Tunability in Metallic Nanoshells With a Spectral Averaging Method.
,”
J. Opt. Soc. Am. A Opt. Image Sci. Vis.
,
22
(
7
), pp.
1288
1292
.10.1364/JOSAA.22.001288
33.
Wang
,
L.
, and
Zunger
,
A.
,
1994
, “
Dielectric Constants of Silicon Quantum Dots
,”
Phys. Rev. Lett.
,
73
(
7
), pp.
1039
1042
.10.1103/PhysRevLett.73.1039
34.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
.10.1016/j.solener.2008.12.009
35.
Drotning
,
W.
,
1978
, “
Optical Properties of Solar-Absorbing Oxide Particles Suspended in a Molten Salt Heat Transfer Fluid
,”
Sol. Energy
,
20
(
4
), pp.
313
319
.10.1016/0038-092X(78)90123-8
You do not currently have access to this content.