This paper presents a new approach of Adaptive Search Control Method to perform maximum power point tracking (MPPT) in solar panels (SP). The suggested approach adapts the operation point (current I and voltage V) of the solar panel so quickly that it tracks MPP under the harshest environmental conditions by incorporating a flexible switching in a Boost dc/dc converter, which connects the photovoltaic (PV) panel to the load. The usage of a flexible switching control increases the dynamic response of MPPT and the efficiency of tracking. A dedicated simulink (matlab) model was developed for validation of the proposed MPPT method which was verified through multiple simulation conditions. Based on these results, the prototype system for evaluating the suggested method was developed and assembled. This prototype was developed on the base of a photonic integrated circuit (PIC) family microcontroller unit with an external circuit for accurate voltage and current measurements. The technical characteristics of the developed system (efficiency and tracking speed) have been verified experimentally with a 100 W c-Si solar panel under various environmental conditions. The results of measured and estimated MPPT efficiency were represented.

References

1.
Kalogirou
,
S. A.
,
2009
, “
Photovoltaic Systems
,”
Solar Energy Engineering
,
Academic Press
,
Boston
.
2.
Tse
,
K. K.
,
Ho
,
M. T.
,
Chung
,
H. S.
, and
Hui
,
S. Y.
,
2002
, “
A Novel Maximum Power Point Tracker for PV Panels Using Switching Frequency Modulation
,”
IEEE Trans. Power Electron.
,
17
(
6
), pp.
980
989
.10.1109/TPEL.2002.805594
3.
Salas
,
V.
,
Olías
,
E.
,
Barrado
,
A.
, and
Lázaro
,
A.
,
2006
, “
Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems
,”
Sol. Energy Mater. Sol. Cells
,
90
(
11
), pp.
1555
1578
.10.1016/j.solmat.2005.10.023
4.
Valentini
,
M.
,
Raducu
,
A.
,
Sera
,
D.
, and
Teodorescu
,
R.
,
2008
, “
PV Inverter Test Setup for European Efficiency, Static and Dynamic MPPT Efficiency Evaluation
,”
11th International Conference on Optimization of Electrical and Electronic Equipment
(
OPTIM 2008
), Brasov, Romania, May 22–24.10.1109/OPTIM.2008.4602445
5.
Ries
,
H.
,
Gordon
,
J. M.
,
Lasken
,
M.
,
1997
, “
High-Flux Photovoltaic Solar Concentrators With Kaleidoscope-Based Optical Designs
,”
Sol. Energy
,
60
(
1
), pp.
11
16
.10.1016/S0038-092X(96)00159-4
6.
Jewell
,
W.
, and
Ramakumar
,
R.
,
1987
, “
The Effects of Moving Clouds of Electric Utilities With Dispersed Photovoltaic Generation
,”
IEEE Trans. Energy Convers.
,
EC-2
(
4
), pp.
570
576
.10.1109/TEC.1987.4765894
7.
International Electrotechnical Commission
,
1999
, “Photovoltaic Systems-Power Conditioners—Procedure for Measuring Efficiency,” International Standard IEC 61683.
8.
Hohm
,
D. P.
, and
Ropp
,
M. E.
,
2000
, “
Comparative Study of Maximum Power Point Tracking Algorithms Using an Experimental, Programmable, Maximum Power Point Tracking Test Bed
,”
Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference
, Anchorage, AK, September 15–22. 10.1109/PVSC.2000.916230
9.
Patcharaprakiti
,
N.
,
Premrudeepreechacharn
,
S.
, and
Sriuthaisiriwong
,
Y.
,
2005
, “
Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid-Connected Photovoltaic System
,”
Renewable Energy
,
30
(
11
), pp.
1771
1788
.10.1016/j.renene.2004.11.018
10.
Cabal
,
C.
,
Alonso
,
C.
,
Cid-Pastor
,
A.
,
Estibals
,
B.
,
Seguier
,
L.
,
Leyva
,
R.
,
Schweitz
,
G.
, and
Alzieu
,
J.
,
2007
, “
Adaptive Digital MPPT Control for Photovoltaic Applications
,”
IEEE International Symposium on Industrial Electronics
,
Vigo, Spain, June 4–7
.10.1109/ISIE.2007.4374985
11.
Hua
,
C.
, and
Lin
,
J.
,
2003
, “
An On-Line MPPT Algorithm for Rapidly Changing Illuminations of Solar Arrays
,”
Renewable Energy
,
28
(
7
), pp.
1129
1142
.10.1016/S0960-1481(02)00214-8
12.
Salas
,
V.
,
Olías
,
E.
,
Lázaro
,
A.
, and
Barrado
,
A.
,
2005
, “
New Algorithm Using Only One Variable Measurement Applied to a Maximum Power Point Tracker
,”
Sol. Energy Mater. Sol. Cells
,
87
(
1-4
), pp.
675
684
.10.1016/j.solmat.2004.09.019
13.
Hsieh
,
G.-C.
,
Chen
.,
H.-L.
,
Chen
,
Y.
,
Tsai
,
C.-M.
, and
Shyu
,
S.-S.
,
2008
, “
Variable Frequency Controlled Incremental Conductance Derived MPPT Photovoltaic Stand-Along DC Bus System
,”
Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC 2008
), Austin, TX, February
24
28
.10.1109/APEC.2008.4522978
14.
Enrique
,
J. M.
,
Andújar
,
J. M.
, and
Bohórquez
,
M. A.
,
2010
, “
A Reliable, Fast and Low Cost Maximum Power Point Tracker for Photovoltaic Applications
,”
Sol. Energy
,
84
(
1
), pp.
79
89
.10.1016/j.solener.2009.10.011
15.
Roy Chowdhury
,
S.
, and
Saha
,
H.
,
2010
, “
Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Arrays
,”
Sol. Energy Mater. Sol. Cells
,
94
(
9
), pp.
1441
1447
.10.1016/j.solmat.2010.04.011
16.
Snyman
,
D. B.
, and
Enslin
,
R. J. H.
,
1993
, “
An Experimental Evaluation of MPPT Converter Topologies for PV Installations
,”
Renewable Energy
,
3
(
8
), pp.
841
848
.10.1016/0960-1481(93)90040-N
17.
Glasner
,
I.
, and
Appelbaum
,
J.
,
1996
, “
Advantage of Boost vs. Buck Topology for Maximum Power Point Tracker in Photovoltaic Systems
,”
Nineteenth Convention of Electrical and Electronics Engineers in Israel
, Jerusalem, November 5–6. 10.1109/EEIS.1996.566988
18.
Averbukh
,
M.
,
Lineykin
,
S.
, and
Kuperman
,
A.
,
2012
, “
Obtaining Small Photovoltaic Array Operational Curves for Arbitrary Cell Temperatures and Solar Irradiation Densities From Standard Conditions Data
,”
Prog. Photovoltaics: Res. Appl.
(in press).10.1002/pip.2199
19.
Erickson
,
R. W.
, and
Maksimovic
,
D.
,
2004
,
Fundamentals of Power Electronics
, 2nd ed.,
Kluwer Academic Publishers, Norwell, MA
, pp.
539
563
.
You do not currently have access to this content.