Prismatic elements are widely used in daylight illumination systems. The characteristics of the light that emerges from the surface of a right-angled prism vary with the apex of the prism and the incident angle of the sunshine illuminating the surface of the prismatic daylight collector. This paper investigates the effect of the apex angle of a right-angled prismatic collector on the performance of the collector using a matrix ray-tracing model and the edge principle. It was found that the majority of the light emerges from the hypotenuse of the right-angled prism when sunshine is incident on the surface of the prismatic daylight collector; furthermore, the flux of the light emerging from the hypotenuse that directs illuminating space decreases as the apex of the right-angled prism is increased. The intensity distribution of the majority of the light emerging from the hypotenuse of a right-angled prism can be used to guide the design of natural light illumination systems and enhance their performance. The percentage of light emerging from the hypotenuse decreases with the number of prismatic elements because the relative area of the emerging light that reaches the adjacent prism increases with the number of prismatic elements. The analysis of the relative area of the hypotenuse, where the emerging light that reaches the adjacent prism according to the edge ray principle shows that the total area is constant when the number of prismatic elements is greater than 10; an economical prismatic daylight collector can be realized with less material due to the larger number of smaller prisms with the same apex.

References

References
1.
Chirarattananon
,
S.
,
Chaiwiwatworakul
,
P.
, and
Pattanasethanon.
S.
,
2002
, “
Daylight Availability and Models for Global and Diffuse Horizontal Illuminance and Irradiance for Bangkok
,”
Renewable Energy
,
26
(
1
), pp.
69
89
.10.1016/S0960-1481(01)00099-4
2.
Krarti
,
M.
,
Erickson
,
P. M.
, and
Hillman
,
T. C.
,
2005
, “
A Simplified Method to Estimate Energy Savings of Artificial Lighting Use From Daylighting
,”
Build. Environ.
,
40
(
6
), pp.
747
754
.10.1016/j.buildenv.2004.08.007
3.
Chel
,
A.
,
Tiwari
,
G. N.
, and
Chandra
,
A.
,
2009
, “
A Model for Estimation of Daylight Factor for Skylight: An Experimental Validation Using Pyramid Shape Skylight Over Vault Roof Mud-House in New Delhi (India)
,”
Appl. Energy
,
86
(
11
), pp.
2507
2519
.10.1016/j.apenergy.2009.03.004
4.
Ruck
,
N. C.
,
2006
, “
International Energy Agency's Solar Heating and Cooling Task 31—Daylighting Buildings in the 21st Century
,”
Energy Build.
,
38
(
7
), pp.
718
720
.10.1016/j.enbuild.2006.03.015
5.
Boyce
,
P.
,
Hunter
,
C.
, and
Howlett
,
O.
,
2003
,
The Benefits of Daylight Through Windows
,
Rensselaer Polytechnic Institute
,
New York
.
6.
Kruger
,
E. L.
, and
Dorigo
,
A. L.
,
2008
, “
Daylighting Analysis in a Public School in Curitiba, Brazil
,”
Renewable Energy
,
33
, pp.
1695
1702
.10.1016/j.renene.2007.09.002
7.
Galasiu
,
A. D.
, and
Veitch
,
J. A.
,
2006
, “
Occupant Preferences and Satisfaction With the Luminous Environment and Control Systems in Daylit Offices: A Literature Review
,”
Energy Build.
,
38
(
7
), pp.
728
742
.10.1016/j.enbuild.2006.03.001
8.
Cheung
,
H. D.
, and
Chung
,
T. M.
,
2008
, “
A Study on Subjective Preference to Daylight Residential Indoor Environment Using Conjoint Analysis
,”
Build Environ.
,
43
(
12
), pp.
2101
2111
.10.1016/j.buildenv.2007.12.011
9.
Wittkopf
,
S.
,
Grobe
,
L. O
.,
Geisler-Moroder
,
D
.,
Compagnon
,
R
.,
Kämpf
,
J
.,
Linhart
F
., and
Scartezzini
,
J. L
.,
2010
, “
Ray Tracing Study for Non-Imaging Daylight Collectors
,”
Sol. Energy
,
84
, pp.
986
996
.10.1016/j.solener.2010.03.008
10.
Greenup
,
P. J.
, and
Edmonds
,
I. A.
,
2004
, “
Test Room Measurements and Computer Simulations of the Micro-Light Guiding Shade Daylight Light Redirecting Device
,”
Sol. Energy
,
76
, pp.
99
109
.10.1016/j.solener.2003.08.018
11.
Rosemann
,
A.
, and
Kaase
,
H.
,
2005
, “
Light Applications for Daylighting Systems
,”
Sol. Energy
,
78
, pp.
772
780
.10.1016/j.solener.2004.09.002
12.
Rosemann
,
A.
,
Mossman
,
M.
, and
Whitehead
,
L.
,
2008
, “
Development of a Cost-Effective Solar Illumination System to Bring Natural Light Into the Building Core
,”
Sol. Energy
,
82
, pp.
302
310
.10.1016/j.solener.2007.09.003
13.
Athienitis
,
A. K.
, and
Tzempelikos
,
A.
,
2002
, “
A Methodology for Simulation of Daylight Room Illuminance Distribution and Light Dimming for a Room With a Controlled Shading Device
,”
Sol. Energy
,
72
, pp.
271
281
.10.1016/S0038-092X(02)00016-6
14.
Yang
,
S. H.
,
Chen
,
Y. Y.
, and
Whang
,
A. J. W.
,
2009
, “
Using Prismatic Structure and Brightness Enhancement Film to Design Cascadable Unit of Static Solar Concentrator in Natural Light Guiding System
,”
Proc. SPIE
,
7423
, p.
74230J
.10.1117/12.825280
15.
Yeh
,
S. C.
,
Whang
,
A. J.
,
Hsiao
,
H. C.
,
Hu
,
X. D.
, and
Chen
,
Y. Y.
,
2011
, “
Distribution of Emerged Energy for Daylight Illuminate on Prismatic Elements
,”
J. Sol. Energy Eng.
,
133
,
021007
.10.1115/1.4003587
16.
Wittkopf
,
S. K.
,
2007
, “
Daylight Performance of Anidolic Ceiling Under Different Sky Conditions
,”
Sol. Energy
,
81
(
2
), pp.
151
161
.10.1016/j.solener.2006.04.002
17.
Linhart
,
F.
, and
Scartezzini
,
J.-L.
,
2010
, “
Minimizing Lighting Power Density in Office Rooms Equipped With Anidolic Daylighting Systems
,”
Sol. Energy
,
84
, pp.
587
595
.
18.
Tsangrassoulis
,
A.
,
Doulos
,
L.
,
Santamouris
,
M.
,
Fontoynont
,
M.
,
Maamari
,
F.
,
Wilson
,
M.
,
Jacobs
,
A.
,
Solomon
,
J.
,
Zimmerman
,
A.
,
Pohl
,
W.
, and
Mihalakakou
,
G.
,
2005
, “
On the Energy Efficiency of a Prototype Hybrid Daylighting System
,”
Sol. Energy
,
79
, pp.
56
64
.10.1016/j.solener.2004.09.014
19.
Page
,
J.
,
Scartezzini
,
J. L.
,
Kaempf
,
J.
, and
Morel
,
N.
,
2007
, “
On-Site Performance of Electrochromic Glazing Coupled to Anidolic Daylighting System
,”
Sol. Energy
,
81
, pp.
1166
1179
.10.1016/j.solener.2007.01.011
20.
Chow
,
T. T.
,
Qiu
,
Z.
, and
Li
,
C.
,
2009
, “
Potential Application of See Through Solar Cells in Ventilated Glazing in Hong Kong
,”
Sol. Energy Mater. Sol. Cells
,
93
, pp.
230
238
.10.1016/j.solmat.2008.10.002
21.
Mohelnikova
,
J.
,
2009
, “
Tubular Light Guide Evaluation
,”
Build. Environ.
,
44
, pp.
965
972
.10.1016/j.buildenv.2009.03.015
22.
Wittkopf
,
S.
,
Grobe
,
L. O.
,
Moroder
,
D. G.
,
Compagnon
,
R.
,
Kampf
,
J.
,
Linhart
,
F.
, and
Scartezzini
,
J. L.
,
2010
, “
Ray Tracing Study for Non-Imaging Daylight Collectors
,”
Sol. Energy
,
84
, pp.
986
996
.10.1016/j.solener.2010.03.008
You do not currently have access to this content.