The objective of this paper is to determine the optimal solar collector type and temperature of a building-scale power generation system employing solar organic Rankine cycle (ORC) engine for a geothermal air-conditioned net zero-energy building (NZEB) in a hot and humid climate. In the authors' previous work, 11 fluids have been suggested to be employed in solar ORCs that use low-temperature or medium-temperature solar collectors. In this paper, the system requirements needed to maintain the electricity demand of a commercial building have been compared for the 11 suggested fluids. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS with the required input for the ORC system derived from the previous study. The commercial building is located in Pensacola of Florida and is served by grid power. The building has been equipped with two geothermal heat pump units and a vertical closed loop system. The performance of the geothermal system has been monitored for 3 weeks. Monitoring data and available electricity bills of the building have been employed to calibrate the building and geothermal air conditioning system simulation. Simulation has been repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements.

References

References
1.
Hermann
,
W. A.
,
2006
, “
Quantifying Global Exergy Resources
,”
Energy
,
31
(
12
), pp.
1349
1366
.10.1016/j.energy.2005.09.006
2.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2009
, “
A Critical Review on Single Component Working Fluids for Organic Rankine Cycles (ORCs)
,”
ASME Early Career Tech. J.
,
8
(
1
), pp.
20.1
20.8
.
3.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.10.1016/j.renene.2010.07.010
4.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
, pp.
2468
2476
.10.1016/j.applthermaleng.2008.12.025
5.
Bruno
,
J. C.
,
Lopez-Villada
,
J.
,
Letelier
,
E.
,
Romera
,
S.
, and
Coronas
,
A.
,
2008
, “
Modeling and Optimization of Solar Organic Rankine Cycle Engines for Reverse Osmosis Desalination
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2212
2226
.10.1016/j.applthermaleng.2007.12.022
6.
Delgadeo-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Preliminary Assessment of Solar Organic Rankine Cycles for Driving a Desalination System
,”
Desalination
,
216
, pp.
252
275
.10.1016/j.desal.2006.12.011
7.
Delgadeo-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Double Cascade Organic Rankine Cycle for Solar Driven Reverse Osmosis Desalination
,”
Desalination
,
216
, pp.
306
313
.10.1016/j.desal.2006.12.017
8.
Kosmadakis
,
G.
,
Manolakos
,
D.
, and
Papadakis
,
G.
,
2011
, “
Simulation and Economic Analysis of a CPV/Thermal System Coupled With an Organic Rankine Cycle for Increased Power Generation
,”
Sol. Energy
,
85
, pp.
308
324
.10.1016/j.solener.2010.11.019
9.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
, pp.
955
966
.10.1016/j.solener.2011.02.010
10.
Torcellini
,
P.
,
Pless
,
S.
, and
Deru
,
M.
,
2006
, “
Zero Energy Buildings: A Critical Look at the Definition
,” National Renewable Energy Laboratory Report No. NREL/CP-550-39833.
11.
Lu
,
C.
,
Zheng
,
M.
, and
Leong
,
W. H.
,
2011
, “
Verification and Analysis of a TNSYS Model of a Demonstration House Equipped With a Solar-Assisted Ground-Coupled Heat Pump System
,”
Proceedings of International Conference on Consumer Electronics
,
Communications and Networks (CECNet 2011)
, Xianning, China, April 16–18, pp.
1887
1891
.
12.
Siddighi
,
O.
,
Fung
,
A.
,
Tse
,
H.
, and
Zhang
,
D.
,
2008
, “
Modeling of the Net Zero Energy Town House in Toronto Using TRNSYS, and an Analysis of the Impact of Using Thermal Mass
,”
Proceedings of the ASME 2nd International Conference on Energy Sustainability
(ES 2008)
, Jacksonville, FL, August 10–14, Paper No. ES2008-54255, pp.
297
304
.10.1115/ES2008-54255
13.
Terziotti
,
L. T.
,
Sweet
,
M. L.
, and
McLeskey
, Jr.,
J. T.
,
2012
, “
Modeling Seasonal Solar Thermal Energy Storage in a Large Urban Resiential Building Using TRNSYS 16
,”
Energy Build.
,
45
, pp.
28
31
.10.1016/j.enbuild.2011.10.023
14.
Ayompe
,
L. M.
,
Duffy
,
A.
,
McCormack
,
S. J.
, and
Conlon
,
M.
,
2011
, “
Validated TRNSYS Model for Forced Circulation Solar Water Heating Systems With Flat Plate and Heat Pipe Evacuated Tube Collectors
,”
Appl. Therm. Eng.
,
31
, pp.
1536
1542
.10.1016/j.applthermaleng.2011.01.046
15.
Quesada
,
B.
,
Sanchez
,
C.
,
Canada
,
J.
,
Royo
,
R.
, and
Paya
,
J.
,
2011
, “
Experimental Results and Simulation With TRNSYS of a 7.2 kWp Grid-Connected Photovoltaic System
,”
Appl. Energy
,
88
, pp.
1772
1783
.10.1016/j.apenergy.2010.12.011
16.
Hobbi
,
A.
, and
Siddighi
,
K.
,
2009
, “
Optimal Design of a Forced Circulation Solar Water Heating System for a Residential Unit in Cold Climate Using TRNSYS
,”
Sol. Energy
,
83
, pp.
700
714
.10.1016/j.solener.2008.10.018
17.
Souliotis
,
M.
,
Kalogirou
,
S.
, and
Tripanagnostopoulos
,
Y.
,
2009
, “
Modeling of an ICS Solar Water Heater Using Artificial Neural Networks and TRNSYS
,”
Renewable Energy
,
34
, pp.
1333
1339
.10.1016/j.renene.2008.09.007
18.
TRNSYS 17 Main Reference Manual, 2011, Solar Energy Laboratory, University of Wisconsin-Madison, Madison, WI.
You do not currently have access to this content.