In this paper, a multiphysics, finite element computational model for a hybrid concentrating photovoltaic/thermal (CPV/T) water collector is developed. The collector consists of a solar concentrator, 18 single junction germanium cells connected in series, and a water channel cooling system with heat-recovery capability. The electrical characteristics of the entire module are obtained from an equivalent electrical model for a single solar cell. A detailed thermal and electrical model is developed to calculate the thermal and electrical characteristics of the collector at different water flow rates. These characteristics include the system temperature distribution, outlet water temperature and the thermal and electrical efficiencies. The model is used to study the effect of flow rate on the efficiencies. It is found that both efficiencies improve as the flow rate increases up to a point (0.03 m/s), and after that point remain at relatively constant levels. However, as the flow rate increases the outlet water temperature decreases, reducing the quality of the extracted thermal energy. In addition to the thermal and electrical modeling, finite element analysis is used to estimate the fatigue life of the module based on the different temperature profiles obtained from the thermal model at flow rates of 0.01 m/s and 0.03 m/s. Results show that for the higher flow rate, the outlet water temperature decreases, but the fatigue life improves. Based on the fatigue life model predictions, it is shown that the thickness of die attach layer must be increased for high outlet temperature applications of the hybrid CPV/T collector.

References

1.
Florschuetz
,
L. W.
,
1975
, “
On Heat Rejection From Terrestrial Solar Cell Arrays With Sunlight Concentration
,”
Proceedings of the 11th IEEE PVSC Conference
,
New York
,
pp.
318
326
.
2.
Florschuetz
,
L. W.
,
1979
, “
Extension of the Hottel–Whiller Model to the Analysis of Combined Photovoltaic/Thermal Flat Plate Collectors
,”
Sol. Energy
,
22
,
pp.
361
366
.10.1016/0038-092X(79)90190-7
3.
O'Leary
,
M. J.
, and
Clements
,
L. D.
,
1980
, “
Thermal–Electric Performance Analysis for Actively Cooled, Concentrating Photovoltaic Systems
,”
Sol. Energy
,
25
,
pp.
401
406
.10.1016/0038-092X(80)90446-6
4.
Mbewe
,
D. J.
,
Card
,
H. C.
, and
Card
,
D. C.
,
1985
, “
A Model of Silicon Solar Cells for Concentrator Photovoltaic and Photovoltaic/Thermal System Design
,”
Sol. Energy
,
35
(
3
),
pp.
247
258
.10.1016/0038-092X(85)90104-5
5.
Al-Baali
,
A. A.
,
1986
, “
Improving the Power of a Solar Panel by Cooling and Light Concentrating
,”
Sol. Wind Technol.
,
3
,
pp.
241
245
.10.1016/0741-983X(86)90002-0
6.
Hamdy
,
M. A.
,
Luttmann
,
F.
, and
Osborn
,
D.
,
1988
, “
Model of a Spectrally Selective Decoupled Photovoltaic/Thermal Concentrating System
,”
Appl. Energy
,
30
,
pp.
209
225
.10.1016/0306-2619(88)90046-3
7.
Agarwal
,
R. K.
, and
Garg
,
H. P.
,
1994
, “
Study of a Photovoltaic-Thermal System-Thermosyphonic Solar Water Heater Combined With Solar Cells
,”
Energy Convers. Manage.
,
35
(
7
),
pp.
605
620
.10.1016/0196-8904(94)90044-2
8.
Garg
,
H. P.
,
Agarwall
,
R. K.
, and
Joshi
,
J. C.
,
1994
, “
Experimental Study on a Hybrid Photovoltaic Thermal Solar Water Heater and Its Performance Prediction
,”
Energy Convers. Manage.
,
35
,
pp.
621
633
.10.1016/0196-8904(94)90045-0
9.
Garg
,
H. P.
, and
Adhikari
,
R. S.
,
1997
, “
Conventional Hybrid Photovoltaic/Thermal (PV/T) Air Heating Collectors: Steady-State Simulation
,”
Renewable Energy
,
11
,
pp.
363
385
.10.1016/S0960-1481(97)00007-4
10.
Garg
,
H. P.
, and
Adhikari
,
R. S.
,
1998
, “
Optical Design Calculations for CPCs
,”
Energy
,
23
(
10
),
pp.
907
909
.10.1016/S0360-5442(98)00027-9
11.
Garg
,
H. P.
, and
Adhikari
,
R. S.
,
1999
, “
Performance Analysis of a Hybrid Photovoltaic/Thermal (PV/T) Collector With Integrated CPC Troughs
,”
Int. J. Energy Res.
,
23
,
pp.
1295
1304
.10.1002/(SICI)1099-114X(199912)23:15<1295::AID-ER553>3.0.CO;2-T
12.
Akbarzadeh
,
A.
, and
Wadowski
,
T.
,
1996
, “
Heat Pipe-Based Cooling Systems for Photovoltaic Cells Under Concentrated Solar Radiation
,”
Appl. Therm. Eng.
,
16
(
1
),
pp.
81
87
.10.1016/1359-4311(95)00012-3
13.
Luque
,
A.
,
Sala
,
G.
,
Arboiro
,
J. C.
,
Bruton
,
T.
,
Cunningham
,
D.
, and
Mason
,
N.
,
1997
, “
Some Results of the EUCLIDES Photovoltaic Concentrator Prototype
,”
Prog. Photovoltaics
,
5
,
pp.
195
212
.10.1002/(SICI)1099-159X(199705/06)5:3<195::AID-PIP166>3.0.CO;2-J
14.
Luque
,
A.
,
Sala
,
G.
, and
Arboiro
,
J. C.
,
1998
, “
Electric and Thermal Model for Non-Uniformly Illuminated Concentration Cells
,”
Sol. Energy Mater. Sol. Cells
,
51
,
pp.
269
290
.10.1016/S0927-0248(97)00228-6
15.
Brogren
,
M.
, and
Karlsson
,
B.
,
2002
, “
Low-Concentrating Water-Cooled PV–Thermal Hybrid Systems for High Latitudes
,”
Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE
,
pp.
1733
1736
.
16.
Coventry
,
J. S.
,
2005
, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
(
2
),
pp.
211
222
.10.1016/j.solener.2004.03.014
17.
Joshi
,
A. S.
, and
Tiwari
,
A.
,
2007
, “
Energy and Exergy Efficiencies of a Hybrid Photovoltaic-Thermal (PV/T) Air Collector
,”
Renewable Energy
,
32
,
pp.
2223
2241
.10.1016/j.renene.2006.11.013
18.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Assessment of Photovoltaic Systems
,”
Sol. Energy
,
83
(
8
),
pp.
1139
1149
.10.1016/j.solener.2009.01.011
19.
Nayak
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Energy and Exergy Analysis of Photovoltaic/Thermal Integrated With a Solar Greenhouse
,”
Energy Build.
,
40
,
pp.
2015
2021
.10.1016/j.enbuild.2008.05.007
20.
Dubey
,
S.
,
Tiwari
,
G. N.
, and
Sandhu
,
G. S.
,
2009
, “
Analytical Expression for Electrical Efficiency of PV/T Hybrid Air Collector
,”
Appl. Energy
,
86
,
pp.
697
705
.10.1016/j.apenergy.2008.09.003
21.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
,
pp.
451
483
.10.1016/j.solmat.2004.09.003
22.
Chow
,
T. T.
,
2010
, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
,
pp.
365
379
.10.1016/j.apenergy.2009.06.037
23.
Cao
,
M.
,
Butler
,
S.
,
Benoit
,
J. T.
,
Jiang
,
J.
,
Radhakrishnan
,
R.
,
Chen
,
Y.
,
Bendapudi
,
S.
, and
Horne
,
S.
,
2008
, “
Thermal Stress Analysis/Life Prediction of Concentrating Photovoltaic Module
,”
J. Sol. Energy Eng.
,
130
(
2
), p.
021011
.10.1115/1.2840572
24.
Ladani
,
L. J.
,
2008
, “
Reliability Estimation for Large-Area Solder Joints Using Explicit Modeling of Damage
,”
IEEE Trans. Device Mater. Reliab.
,
80
,
pp.
375
386
.10.1109/TDMR.2008.919594
25.
Chiang
,
S.
,
Chou
,
T.
,
Shih
,
Z.
,
Hong
,
H.
, and
Chiang
,
K.
,
2011
, “
Life Prediction of HCPV Under Thermal Cycling Test Condition
,”
Microelectron. Eng.
,
88
,
pp.
785
790
.10.1016/j.mee.2010.07.033
26.
Bosco
,
N.
,
Silverman
,
T. J.
, and
Kurtz
,
S.
,
2011
, “
Modeling Thermal Fatigue in CPV Cell Assemblies
,”
IEEE J. Photovoltaic
,
Vol.
1
(
2
),
pp.
242
247
.10.1109/JPHOTOV.2011.2172575
27.
Spectrolab Solar, 2002, “GaAs/Ge Single Junction Solar Cells
,” http://www.spectrolab.com/DataSheets/SJCell/sj.pdf
28.
Gow
,
J. A.
, and
Manning
,
C. D.
,
1999
, “
Development of a Photovoltaic Array Model for Use in Power-Electronics Simulation Studies
,”
IEE Proc.: Electr. Power Appl.
,
146
(
2
),
pp.
193
200
.10.1049/ip-epa:19990116
29.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
Proceedings of the 50th Electronic Components and Technology Conference
,
Las Vegas
,
pp.
1048
1058
.
30.
Wang
,
G. Z.
,
Cheng
,
Z. N.
,
Becker
,
K.
, and
Wilde
,
J.
,
2001
, “
Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys
,”
J. Electron. Packag.
,
123
,
pp.
247
253
.10.1115/1.1371781
31.
Zhang
,
Q.
,
2004
, “
Isothermal Mechanical and Thermo-Mechanical Durability Characterization of Selected Pb-Free Solders
,”
Ph. D. thesis
,
University of Maryland
,
College Park, MD
.
You do not currently have access to this content.