A model for the combined spectral radiative and convective heat transfer analysis of solar chimneys is developed. The radiation part of this model is based on the spectral distribution of the solar heat flux and spectral radiative properties of solar chimney components. Two approaches are used for the convective part of this model, empirical correlations and a CFD analysis. The empirical correlations are based on the stack effect correlation for airflow motion and a convective heat transfer correlation for the heat transfer coefficient. The empirical correlations are used to obtain an initial estimation of surface temperatures, which are then used in the CFD model to determine an improved estimation of the heat transfer coefficients and airflow rate. Iterating between the spectral radiative and the CFD models resulted in a converged set of values for the solar chimney airflow rate and its thermal characteristics. The model is used to predict the airflow rate for various configurations and solar irradiances of solar chimneys.

References

References
1.
Schlaich
,
J.
,
Bergermann
,
R.
,
Schiel
,
W.
, and
Weinrebe
,
G.
,
2003
, “
Design of Commercial Solar Tower Systems: Utilization of Solar Induced Convective Flow for Power Generation
,”
Proceedings of the 2003 International Solar Energy Conference, Kohala Coast
,
Hawaii
,
March 15–18
,
2003
,
ASME
Paper No. ISEC2003-44057. 10.1115/ISEC2003-44057
2.
Trieb
,
F.
,
Langniβ
,
O.
, and
Klaiβ
,
H.
,
1997
, “
Solar Electricity Generation—A Comparative View of Technologies, Costs and Environmental Impact
,”
Sol. Energy
,
59
, pp.
89
99
.10.1016/S0038-092X(97)80946-2
3.
Mills
,
D.
,
2004
, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
,
76
, pp.
19
31
.10.1016/S0038-092X(03)00102-6
4.
Onyango
,
F. N.
, and
Ochieng
,
R. M.
,
2006
, “
The Potential of Solar Chimney for Application in Rural Areas of Developing Countries
,”
Fuel
,
85
, pp.
2561
2566
.10.1016/j.fuel.2006.04.029
5.
Dai
,
Y. J.
,
Huang
,
H. B.
, and
Wang
,
R. Z.
,
2003
, “
Case Study of Solar Chimney Power Plants in Northwestern Regions of China
,”
Renewable Energy
,
28
, pp.
1295
1304
.10.1016/S0960-1481(02)00227-6
6.
Bilgen
,
E.
, and
Rheault
,
J.
,
2005
, “
Solar Chimney Power Plants for High Latitudes
,”
Sol. Energy
,
79
, pp.
449
458
.10.1016/j.solener.2005.01.003
7.
Arce
,
J.
,
Xaman
,
J. P.
,
Alvarez
,
G.
,
Jiménez
,
M. J.
, and
Heras
,
M. R.
,
2009
, “
A Parametetric Study of Conjugate Heat Transfer of Solar Chimney
,”
Proceedings of the ASME Energy Sustainability Conference
,
San Francisco, CA
,
Jul. 19–23
,
2009
,
ASME
Paper No. ES2009-90387. 10.1115/ES2009-90387
8.
Bansal
,
N. K.
,
Mathur
,
R.
, and
Bhandari
,
M. S.
,
1993
, “
Solar Chimney for Enhanced Stack Ventilation
,”
Build. Environ.
,
28
, pp.
373
377
.10.1016/0360-1323(93)90042-2
9.
Khedari
,
J.
,
Boonsri
,
B.
, and
Hirunlabh
,
J.
,
2000
, “
Ventilation Impact of a Solar Chimney on Indoor Temperature Fluctuation and Air Change in a School Building
,”
Energy Build.
,
32
, pp.
89
93
.10.1016/S0378-7788(99)00042-0
10.
Hirunlabh
,
J.
,
Kongduang
,
W.
,
Namprakai
,
P.
, and
Khedari
,
J.
,
1999
, “
Study of Natural Ventilation of Houses by a Metallic Solar Wall Under Tropical Climate
,”
Renewable Energy
,
18
, pp.
109
119
.10.1016/S0960-1481(98)00783-6
11.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
3rd ed.
,
John Wiley & Sons
,
New York
.
12.
ASHRAE
,
2009
,
2009 ASHRAE Handbook of Fundamentals
,
ASHRAE
,
Atlanta, GA
, Chap. 16.
13.
Hollands
,
K. G. T.
,
Unny
,
T. E.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1976
, “
Free Convection Heat Transfer Across Inclined Air Layers
,”
Trans. ASME J. Heat Transfer
,
98
, p.
189
.10.1115/1.3450517
14.
Fujii
,
T.
, and
Imura
,
H.
,
1972
, “
Natural–Convection Heat Transfer from a Plate With Arbitrary Inclination
,”
Int. J. Heat Mass Transfer
,
15
, p.
755
.10.1016/0017-9310(72)90118-4
15.
You do not currently have access to this content.