On the base of the two classical thermodynamic cycles (Kalina cycle and Rankine cycle), solar-boosted Kalina system (Kalina solar system) and solar-boosted Rankine system (Rankine solar system) with traditional nonconcentrating flat plate solar collector (FPSC) and evacuated tube solar collector (ETSC) are investigated in the present paper. The proposed solar systems are considered to be the hybrid of power generation subcycle and solar collector subcycle. Their electricity generating performances are compared under their respective optimal operating conditions to clarify which one is more competitive in solar utilization. Results show that ETSC is the better choice for the both solar systems. Further, the performance comparison shows that the low-temperature solar energy utilized in Kalina cycle is predominant to generate electricity. Meanwhile, the study also find that mass flow rate of the power generation subcycle, mass flow rate of the solar collector subcycle, mass fraction of ammonia and the regenerator performance are important operational parameters for high performance of the Kalina solar system. Finally, with the aid of the weather conditions of Kumejima Island in Japan, the perceptual knowledge for Kalina solar system by using an application case is shown in the paper.

References

1.
El-Sayed
,
Y. M.
, and
Tribus
,
M.
,
1985
,
A Theoretical Comparison of the Rankine and Kalina Cycles
,
AES-1, ASME Special Publications
, New York, pp.
97
102
.
2.
Ibrahim
,
M. B.
, and
Kovach
,
R. M.
,
1993
, “
A Kalina Cycle Application for Power Generation
,”
Energy
,
18
(
9
), pp.
961
969
.10.1016/S0360-5442(06)80001-0
3.
Kalina
,
A. I.
, and
Leibowitz
,
H. M.
,
1989
, “
Application of the Kalina Cycle Technology to Geothermal Power Generation
,” Vol. 13,
Transactions-Geothermal Resources Council
, Davis, CA, pp.
605
611
.
4.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
,
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2005
, “
A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy
,”
JSME Int. J., Ser. B
,
48
, pp.
540
547
.10.1299/jsmeb.48.540
5.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Study of Solar Energy Powered Transcritical Cycle Using Supercritical Carbon Dioxide
,”
Int. J. Energy Res.
,
30
, pp.
1117
1129
.10.1002/er.1201
6.
Zhang
,
X. R.
,
Yamaguchi
,
H.
, and
Uneno
,
D.
,
2007
, “
Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2
,”
Renewable Energy
,
32
, pp.
2617
2628
.10.1016/j.renene.2007.01.003
7.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Uneno
,
D.
,
Fujima
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2006
, “
Analysis of a Novel Solar Energy-Powered Rankine Cycle for Combined Power and Heat Generation Using Supercritical Carbon Dioxide
,”
Renewable Energy
,
31
(
12
), pp.
1839
1854
.10.1016/j.renene.2005.09.024
8.
Zhang
,
X. R.
,
Yamaguchi
,
H.
,
Fujima
K.
,
Enomoto
,
M.
, and
Sawada
,
N.
,
2007
, “
Theoretical Analysis of a Thermodynamic Cycle for Power and Heat Generation Using Supercritical Carbon Dioxide
,”
Energy
,
32
, pp.
591
599
.10.1016/j.energy.2006.07.016
9.
Yamada
,
N.
,
Hoshi
,
A.
, and
Ikegami
,
Y.
,
2009
, “
Performance Simulation of Solar-Boosted Ocean Thermal Energy Conversion Plant
,”
Renewable Energy
,
34
, pp.
1752
1758
.10.1016/j.renene.2008.12.028
10.
Wang
,
X. D.
,
Zhao
,
L.
,
Wang
,
J. L.
,
Zhang
,
W. Z.
,
Zhao
,
X. Z.
, and
Wu
,
W.
,
2010
, “
Performance Evaluation of a Low-Temperature Solar Rankine Cycle System Utilizing R245fa
,”
Sol. Energy
,
84
(
3
), pp.
353
364
.10.1016/j.solener.2009.11.004
11.
Wang
,
X. D.
,
Zhao
,
L.
, and
Wang
,
J. L.
,
2011
, “
Experimental Investigation on the Low-Temperature Solar Rankine Cycle System Using R245fa
,”
Energy Convers. Manage.
,
52
(
2
), pp.
946
952
.10.1016/j.enconman.2010.08.022
12.
Delgado-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Preliminary Assessment of Solar Organic Rankine Cycles for Driving a Desalination System
,”
Desalination
,
216
(
1–3
), pp.
252
275
.10.1016/j.desal.2006.12.011
13.
Delgado-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Comparison of Solar Technologies for Driving a Desalination System by Means of an Organic Rankine Cycle
,”
Desalination
,
216
(
1–3
), pp.
276
291
.10.1016/j.desal.2006.12.013
14.
Delgado-Torres
,
A. M.
,
Garcia-Rodriguez
,
L.
, and
Romero-Ternero
,
V. J.
,
2007
, “
Preliminary Design of a Solar Thermal-Powered Seawater Reverse Osmosis System
,”
Desalination
,
216
(
1–3
), pp.
292
305
.10.1016/j.desal.2006.12.015
15.
Delgado-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2007
, “
Double Cascade Organic Rankine Cycle for Solar-Driven Reverse Osmosis Desalination
,”
Desalination
,
216
(
1–3
), pp.
306
313
.10.1016/j.desal.2006.12.017
16.
Manolakos
,
D.
,
Papadakis
,
G.
, and
Kyritsis
,
S.
,
2007
, “
Experimental Evaluation of an Autonomous Low-Temperature Solar Rankine Cycle System for Reverse Osmosis Desalination
,”
Desalination
,
203
(
1–3
), pp.
366
374
.10.1016/j.desal.2006.04.018
17.
Bruno
,
J.
,
Lopezvillada
,
J.
,
Letelier
,
E.
,
Romera
,
S.
, and
Coronas
,
A.
,
2008
, “
Modelling and Optimisation of Solar Organic Rankine Cycle Engines for Reverse Osmosis Desalination
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2212
2226
.10.1016/j.applthermaleng.2007.12.022
18.
Delgado-Torres
,
A. M.
, and
Garcia-Rodriguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2846
2856
.10.1016/j.enconman.2010.06.022
19.
Wang
,
J. L.
,
Zhao
,
L.
, and
Wang
,
X. D.
,
2010
, “
A Comparative Study of Pure and Zeotropic Mixtures in Low-Temperature Solar Rankine Cycle
,”
Appl. Energy
,
87
(
11
), pp.
3366
3373
.10.1016/j.apenergy.2010.05.016
20.
Lolos
,
P. A.
, and
Rogdakis
,
E. D.
,
2009
, “
A Kalina Power Cycle Driven by Renewable Energy Sources
,”
Energy
,
34
(
4
), pp.
457
464
.10.1016/j.energy.2008.12.011
21.
Mittelman
,
G.
, and
Epstein
,
M.
,
2010
, “
A Novel Power Block for CSP Systems
,”
Sol. Energy
,
84
, pp.
1761
1771
.10.1016/j.solener.2010.06.004
22.
Sun
,
F. M.
,
Ikegami
,
Y.
, and
Jia
,
B. J.
,
2012
, “
A Study on Kalina Solar System With an Auxiliary Superheater
,”
Renewable Energy
,
41
, pp.
210
219
.10.1016/j.renene.2011.10.026
23.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
,
1993
, “
Thermodynamic Properties of Ammonia-Water Mixtures
,” ASHRAE Trans. Symposia, Paper No. CH-93-21-2.
24.
Uehara
,
H.
,
Miyara
,
A.
,
Ikegami
,
Y.
, and
Nakaoka
T.
,
1996
, “
Performance Analysis of an OTEC Plant and a Desalination Plant Using an Integrated Hybrid Cycle
,”
J. Sol. Energy Eng.
,
118
, pp.
115
122
.10.1115/1.2847976
25.
Uehara
,
H.
, and
Ikegami
,
Y.
,
2001
, “
Optimization of a Closed-Cycle OTEC System
,”
J. Sol. Energy Eng.
,
112
, pp.
247
256
.10.1115/1.2929931
26.
Sun
,
F. M.
, and
Ikegami
,
Y.
,
2010
, “
Direct Method to Maximize Net Power Output of Rankine Cycle in Low-Grade Thermal Energy Conversion
,”
J. Therm. Sci. Eng. Appl.
,
2
, p.
0210031
10.1115/1.4002564.
27.
Sun
,
F. M.
,
Ikegami
,
Y.
,
Jia
,
B. J.
, and
Arima
,
H.
,
2012
, “
Optimization Design and Exergy Analysis of Organic Rankine Cycle in Ocean Thermal Energy Conversion
,”
Appl. Ocean Res.
,
35
, pp.
38
46
.10.1016/j.apor.2011.12.006
28.
Stewart
,
R. B.
,
Jacobsen
R. T.
, and
Renoncello
,
S. G.
,
1986
,
ASHRAE Thermodynamic Properties of Refrigerants
, ASHRAE, Atlanta, GA, pp.
93
97
, 262–282.
29.
Madhawa Hettiarachchi
,
H. D.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11 (KCS-11) With Low-Temperature Heat Sources
,”
J. Energy Res. Technol.
,
129
, pp.
243
247
.10.1115/1.2748815
30.
Lu
,
X. L.
,
Watson
,
A.
, and
Deans
,
J.
,
2009
, “
Analysis of the Thermodynamic Performance of Kalina Cycle System 11 (KCS11) for Geothermal Power Plant: Comparison With Kawerau ORMAT Binary Plant
,”
ASME 2009 3rd International Conference on Energy Sustainability Collocated With the Heat Transfer and InterPACK09 Conferences (ES2009)
,
San Francisco
,
CA
,
July 19–23
,
ASME
Paper No. ES2009-90165, pp.
357
358
10.1115/ES2009-90165.
You do not currently have access to this content.