In this paper we present a theoretical study of a small solar chimney. The dimensions of the solar chimney channel are 1.95 m high, 1.70 m wide, and 0.24 m deep. The channel of the solar chimney has in its backside a metallic plate as a solar heat absorber, and it is attached to a concrete wall, which acts as storage and thermal insulation. On the front part of the chimney a glass cover is used to decrease the heat losses to the exterior. For this theoretical study, the steady-state energy balance equations were solved numerically for each element of the solar chimney. The results showed the temperature profiles for the glass cover, the air inside the channel, and the metallic plate. Also, the air mass flow rate was determined. When solar irradiance increases from 100 to 700 W/m2, the maximum instantaneous efficiency of the system varies from 28% to 37%, and also, the volumetric flow rate increases from 61 to 147 m3/h.

References

References
1.
Bansal
,
N.
,
Mathur
,
R.
, and
Bhandari
,
M.
,
1994
, “
A Study of Solar Chimney Assisted Wind Tower System for Natural Ventilation in Buildings
,”
Building Environ.
,
29
, pp.
495
500
.10.1016/0360-1323(94)90008-6
2.
Bouchair
,
A.
,
1994
, “
Solar Chimney for Promoting Cooling Ventilation in Southern Algeria
,”
Building Serv. Eng. Res. Technol.
,
15
, pp.
81
93
.10.1177/014362449401500203
3.
Gan
,
G.
, and
Riffat
,
S.
,
1998
, “
A Numerical Study of Solar Chimney for Natural Ventilation of Buildings With Heat Recovery
,”
Appl. Thermal Eng.
,
18
, pp.
1171
1187
.10.1016/S1359-4311(97)00117-8
4.
Martí
,
H. J.
, and
Heras
,
M. R.
,
2007
, “
Dynamic Physical Model for a Solar Chimney
,”
Solar Energy
,
81
, pp.
614
622
.10.1016/j.solener.2006.09.003
5.
Kasayapanand
,
N.
,
2008
, “
Enhanced Heat Transfer in Inclined Solar Chimney by Electrohydrodynamic Technique
,”
Renewable Energy
,
33
, pp.
444
453
.10.1016/j.renene.2007.03.014
6.
Bassiouny
,
R.
, and
Koura
,
N.
,
2008
, “
An Analytical and Numerical Study of Solar Chimney Use for Room Natural Ventilation
,”
Energy Buildings
,
40
, pp.
865
873
.10.1016/j.enbuild.2007.06.005
7.
Lee
,
K.
, and
Strand
,
R.
,
2009
, “
Enhancement of Natural Ventilation in Buildings Using a Thermal Chimney
,”
Energy Buildings
,
41
, pp.
615
621
.10.1016/j.enbuild.2008.12.006
8.
Ong
,
K.
,
2003
, “
A Mathematical Model of a Solar Chimney
,”
Renewable Energy
,
28
, pp.
1047
1060
.10.1016/S0960-1481(02)00057-5
9.
Hirunlabh
,
J.
,
Kongduang
,
W.
,
Namprakai
,
P.
, and
Khedari
,
J.
,
1999
, “
Study of Natural Ventilation of Houses by a Metallic Solar Wall Under Tropical Climate
,”
Renewable Energy
,
18
, pp.
109
119
.10.1016/S0960-1481(98)00783-6
10.
Duffie
,
A. J.
, and
Beckman
,
A. W.
,
1996
,
Solar Engineering of Thermal Processes
,
John Wiley
,
New York
.
11.
Bansal
,
N.
,
Mathur
,
R.
, and
Bhandari
,
M.
,
1993
, “
Solar Chimney for Enhanced Stack Ventilation
,”
Building Environ.
,
28
, pp.
373
377
.10.1016/0360-1323(93)90042-2
12.
Ong
,
K.
, and
Chow
,
C.
,
2003
, “
Performance of a Solar Chimney
,”
Solar Energy
,
74
, pp.
1
17
.10.1016/S0038-092X(03)00114-2
13.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
, pp.
1323
1329
.10.1016/0017-9310(75)90243-4
14.
Incropera
,
F. P.
, and
De Witt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
John Wiley
,
New York
.
15.
Palero
,
S.
,
San Juan
,
C.
,
Enríquez
,
R.
,
Ferrer
,
J. A.
,
Soutullo
,
S.
,
Martí
J.
,
Bosqued
,
A.
,
Heras
,
J.
,
Guzmán
,
J. D.
,
Jiménez
,
M. J.
,
Bosqued
,
R.
,
Porcar
B.
, and
Heras
,
M. R.
,
2006
, “
Thorough Study of a Proposal to Improve the Thermal Behaviour of a Bioclimatic Building
,”
23rd International Conference on Passive and Low Energy Architecture
,
Geneva, Switzerland
,
Sept. 6–8.
You do not currently have access to this content.