Parabolic trough (PT) technology can be considered the state of the art for solar thermal power plants thanks to the almost 30 yr of experience gained in SEGS and, recently, Nevada Solar One plants in the United States and Andasol plant in Spain. One of the major issues that limits the wide diffusion of this technology is the high investment cost of the solar field and, particularly, of the solar collector. For this reason, research has focused on developing new solutions that aim to reduce costs. This paper compares, at nominal conditions, commercial Fresnel technology for direct steam generation with conventional parabolic trough technology based on synthetic oil as heat-transfer. The comparison addresses nominal conditions as well as annual average performance. In both technologies, no thermal storage system is considered. Performance is calculated by Thermoflex®, a commercial code, with a dedicated component to evaluate solar plant. Results will show that, at nominal conditions, Fresnel technology has an optical efficiency of 67%, which is lower than the 75% efficiency of the parabolic trough. Calculated net electric efficiency is about 19.25%, whereas PT technology achieves 23.6% efficiency. In off-design conditions, the performance gap between Fresnel and parabolic trough increases because the former is significantly affected by high incident angles of solar radiation. The calculated sun-to-electric annual average efficiency for a Fresnel plant is 10.2%, which is a consequence of the average optical efficiency of 38.8%; a parabolic trough achieves an overall efficiency of 16%, with an optical efficiency of 52.7%. An additional case with a Fresnel collector and synthetic-oil outlines the differences among the cases investigated. Since part of the performance difference between Fresnel and PT technologies is simply due to different definitions, we introduce additional indexes to make a consistent comparison. Finally, a simplified economic assessment shows that Fresnel collectors must reduce investment costs of at least 45% than parabolic trough to achieve the same levelized cost of electricity.

References

References
1.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
,
E.
,
2011
, “
Development of an Innovative Code for the Design of Thermodynamic Solar Power Plants Part B: Performance Assessment of Commercial and Innovative Technologies
,”
Renewable Energy
,
36
, pp.
2465
2473
.10.1016/j.renene.2011.02.003
2.
Franco
,
F.
,
Anantharaman
,
R.
,
Bolland
,
O.
,
Booth
,
N.
,
van Dorst
,
E.
,
Ekstrom
,
C.
,
Sanchez
,
E.
,
Macchi
,
E.
,
Manzolini
,
G.
,
Prins
,
M.
,
Pfeffer
,
A.
,
Rezvani
,
S.
,
Robinson
,
L.
, and
Zahra
,
A. M.
,
2010
, “
Common Framework and Test Cases for Transparent and Comparable Techno-Economic Evaluations of CO2 Capture Technologies—The Work of the European Benchmark Task Force
,”
Proceedings of GHGT-10 International Conference
,
Amsterdam
.
3.
Inc., Thermoflow. Thermoflex website
, http://www.thermoflow.com/Products_FullyFlexible.htm
4.
Munoz
,
J.
,
Martinez-Val
,
J. M.
, and
Ramos
,
A.
,
2011
, “
Thermal Regimes in Solar-Thermal Linear Collectors
,”
Sol. Energy
,
85
, pp.
857
870
.10.1016/j.solener.2011.02.004
5.
Moring
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Haberle
,
A.
,
2011
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
, pp.
1
12
.10.1016/j.solener.2011.06.020
6.
Hoyer
,
M.
,
Riffelmann
,
K.-J.
,
Benitez
,
D.
, and
Nava
,
P.
,
2009
, “
Performance and Cost Comparison of Linear Fresnel and Parabolic Trough Ccollectors
,”
Proceedings of SolarPaces 2009
,
Berlin
.
7.
Dersh
,
J.
,
Morin
,
G.
,
Eck
,
M.
, and
Haberle
,
A.
,
2009
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Systems—System Analysis to Determine Break Even Costs of Linear Fresnel Collectors
,”
Proceedings of Solar Paces 2009
,
Berlin
.
8.
Solar Millennium
,
A. G.
,
2008
,
The Parabolic Trough Power Plants Andasol 1 to 3
. http://www.solarmillennium.de/index,lang2,1,2184.html
9.
Novatech Biosol
,
2009
, Technical Data—NOVA 1.
11.
NREL Concentrating Solar Power Projects
, http://www.nrel.gov/csp/solarpaces/
12.
Patnode
,
A. M.
,
2006
,
Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants
, Master’s thesis,
University of Wisconsin
,
Madison
.
13.
Solutia
,
Therminol VP1 Vapour Phase/Liquid Phase Heat Transfer Fluid
, http://www.therminol.com/pages/products/vp-1.asp
14.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1695
1721
.10.1016/j.rser.2010.03.012
15.
Kelly
,
B.
, and
Kearney
,
D.
,
2006
, “
Parabolic Trough Solar System Piping Model
,” NREL—Technical Report No. NREL/SR-550-40165.
16.
Flabeg: Solar Mirrors website
, http://www.flabeg.com/en/02_solar_mirror.html
17.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EuroTrough—Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
11th Internaitonal Symposium on Concentrating Solar Power and Chemical Energy Technologies
,
September
4–6
,
Zurich
.
18.
Novatec Biosol
,
2010
, personal comunication.
19.
Montes
,
M. J.
,
Abanades
,
A.
, and
Martinez-Val
,
J. M.
,
2009
, “
Performance of a Direct Steam Generation Solar Thermal Power Plant for Electricity Production as a Function of the Solar Multiple
,”
Sol. Energy
,
83
, pp.
679
689
.10.1016/j.solener.2008.10.015
20.
Zarza
,
E.
,
Ester Rojas
,
M.
,
Gonzales
,
L.
,
Caballero
,
J.
, and
Rueda
,
F.
,
2006
, “
INDITEP: The First Pre-Commercial DSG Solar Power Plant
,”
Sol. Energy
,
80
, pp.
1270
1276
.10.1016/j.solener.2005.04.019
21.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
E.
,
2011
, “
Development of an Innovative Code for the Design of Thermodynamic Solar Power Plants Part A: Code Description and Test Case
,”
Renewable Energy
,
36
, pp.
1993
2003
.10.1016/j.renene.2010.12.027
22.
Manzolini
,
G.
,
Giostri
,
A.
,
Saccilotto
,
C.
,
Silva
,
P.
, and
Macchi
E.
,
2011
, “
A Numerical Model for Off-Design Performance Prediction of Parabolic Trough Based Solar Power Plants
,”
ASME J Sol. Energy Eng.
,
134
, p.
011003
.10.1115/1.4005105
23.
Cohen
,
G. E.
,
Kearney
,
D.
, and
Kolb
,
G. J.
,
1999
, “
Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants
,” SANDIA—Technical Report No. SAND99-1290,
Albuquerque
.
24.
25.
Duffie
,
J.
, and
Beckman
,
W.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
John Wiley & Sons, Inc.
,
New York
.
26.
Mertins
,
M.
,
2009
, “
Technische und wirtschaftliche Analyse von horizontalen Fresnel-Kollektoren
,”
University of Karlsruhe
,
Karlsruhe, Germany
.
27.
Montes Pita
,
M. J.
,
2008
, “
Analisis y Propuestas de Sistemas Solares de Alta Exergia Que Emplean Agua como Fluido Calorifero
,” Master’s thesis,
Universidad Politécnica de Madrid
,
Madrid, Spain
.
28.
McIntire
,
W. R.
,
1982
, “
Factored Approximations for Biaxial Incident Angle Modifiers
,”
Sol. Energy
,
29
, pp.
315
322
.10.1016/0038-092X(82)90246-8
29.
Ronnelid
,
M.
,
Perers
,
B.
, and
Karlsson
,
B.
,
1997
, “
On the Factorisation of Incidence Angle Modifiers for CPC Collectors
,”
Sol. Energy
,
59
, pp.
281
286
.10.1016/S0038-092X(97)00016-9
30.
Thermoflow
,
2010
,
Thermoflex Help System
, http://www.thermoflow.com/Support_RecentReleases.htm
31.
Bellintani
,
S.
,
2009
, personal communication.
32.
Cohen
,
G.
,
2010
,
CSP Industry Encounter–ASES Forum, presentation at ASES conference in Phoenix
.
33.
NREL
,
2008
,
Solar Advisor Model (SAM) software
.
You do not currently have access to this content.