The CCD camera-based flux measurement at Paul Scherrer Institute's (PSI) high flux solar simulator (HFSS) is influenced by a spatially variable spectrum of the concentrated radiation characteristic for arc lamp-based solar simulators. This results in a substantial error in the radiative power determined by integration of the flux distribution. This systematic error is assessed by numerically modeling the response of the CCD camera in use. Measured spectra of concentrated radiation obtained at different points in the flux distribution, measured transmission characteristics of all optical elements, and published data for the spectral sensitivity of the CCD chip are applied in the model. The response of a water calorimeter is used as baseline case. It is shown that the magnitude of the error depends strongly on the region analyzed, i.e., on aperture size, on the wavelength band analyzed, and, unfortunately, also on the number of lamps in operation. A relative error in the range of 10–30% is observed if an aperture with 1 cm in diameter covering the region of peak concentration is considered. It will be shown that the error arises due to the fact that a photon counter (CCD camera) is used to determine the thermal power.

References

References
1.
Kendall
,
J. M.
, Sr.
, and
Berdahl
,
C. M.
,
1970
. “
Two Blackbody Radiometers of High Accuracy
,”
Appl. Opt.
,
9
(
5
), pp.
1082
1091
.10.1364/AO.9.001082
2.
Gardon
,
R.
,
1953
, “
An Instrument for the Direct Measurement of Intense Thermal Radiation
,”
Rev. Sci. Instrum.
,
24
(
5
), pp.
366
370
.10.1063/1.1770712
3.
Ballestrin
,
J.
,
Ulmer
,
S.
,
Morales
,
A.
,
Barnes
,
A.
,
Langley
,
L. W.
, and
Rodriguez
,
M.
,
2003
, “
Systematic Error in the Measurement of Very High Solar Irradiance
,”
Sol. Energy Mater. Sol. Cells
,
80
(
3
), pp.
375
381
.10.1016/j.solmat.2003.08.014
4.
Kaluza
,
J.
, and
Neumann
,
A.
,
2001
. “
Comparative Measurements of Different Solar Flux Gauge Types
,”
Trans. ASME, J. Sol. Energy
,
123
(
3
), pp.
251
255
.10.1115/1.1385201
5.
Ulmer
,
S.
,
Lupfert
,
E.
,
Pfander
,
M.
, and
Buck
,
R.
,
2004
, “
Calibration Corrections of Solar Tower Flux Density Measurements
,”
Energy
,
29
(
5–6
), pp.
925
933
.10.1016/S0360-5442(03)00197-X
6.
Ballestrin
,
J.
,
Estrada
,
C. A.
,
Rodriguez-Alonso
,
M.
,
Perez-Rabago
,
C.
,
Langley
,
L. W.
, and
Barnes
,
A.
,
2004
, “
High-Heat-Flux Sensor Calibration Using Calorimetry
,”
Metrologia
,
41
(
4
), pp.
314
318
.10.1088/0026-1394/41/4/013
7.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
Trans. ASME, J. Sol. Energy
,
129
(
4
), pp.
405
411
.10.1115/1.2769701
8.
Dibowski
,
G.
,
Neumann
,
A.
,
Rietbrock
,
P.
,
Willsch
,
P.
,
Säck
,
J.-P.
, and
Funken
,
K.-H.
,
2007
, “
Der neue Hochleistungsstrahler des DLR—Grundlagen, Technik, Anwendung
,”
In 10. Kölner Sonnenkolloquium
.
9.
Krueger
,
K. R.
,
Davidson
,
J. H.
, and
Lipinski
,
W.
,
2011
. “
Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research
,”
Trans. ASME, J. Sol. Energy
,
133
(
1
), p.
011013
.10.1115/1.4003298
10.
Alxneit
,
I.
, and
Schmit
,
H.
,
2012
, “
Spectral Characterization of PSI's High-Flux Solar Simulator
,”
Trans. ASME, J. Sol. Energy
,
134
(
1
), p.
011013
.10.1115/1.4005249
You do not currently have access to this content.