An experimental study of the heat transfer characteristics of the bulk flow of sand in a sand–air heat exchanger is conducted. The study is conducted in the context of the development of a high-temperature solar gas turbine (HTSGT) system. This system is being developed by King Saud University and the Georgia Institute of Technology with the aim of demonstrating the feasibility of using sand as the heat transfer and energy storage medium in central receiver systems. Experiments are conducted on silica sand and olivine sand, both of which are attractive options due to their wide availability. The apparatus includes a tube bank consisting of eight electrically heated tubes arranged in three rows in a staggered formation. Heat transfer coefficient results are reported for bare and finned tubes for sand feed velocities of 1–3 mm/s. They were found in the range of 80–160 W/m2 K.

References

References
1.
Schmitz
,
M.
,
Schwarzbözl
,
P.
,
Buck
,
R.
, and
Pitz-Paal
,
R.
,
2006
, “
Assessment of the Potential Improvement due to Multiple Apertures in Central Receiver Systems With Secondary Concentrators
,”
Sol. Energy
,
80
, pp.
111
120
.10.1016/j.solener.2005.02.012
2.
Fend
,
T.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
,
Bauer
,
J.
, and
Hoffschmidt
,
B.
,
2004
, “
Two Novel High-Porosity Materials as Volumetric Receivers for Concentrated Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
84
, pp.
291
304
.10.1016/j.solmat.2004.01.039
3.
Koll
,
G.
,
Schwarzbözl
,
P.
,
Hennecke
,
K.
,
Hartz
,
T.
,
Schmitz
,
M.
, and
Hoffschmidt
,
B.
,
2009
, “
The Solar Tower Julich—A Research and Demonstration Plant for Central Receiver Systems
,”
Proceedings of SolarPACES 2009
,
Berlin, Germany
, September 15–18.
4.
Reilly
,
H.
, and
Kolb
,
G.
,
2001
, “
An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND2001-3674. 10.2172/791898
5.
Ortega
,
J.
,
Burgaleta
,
J.
, and
Téllez
,
F.
,
2008
, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
,
024501
.10.1115/1.2807210
6.
Laing
,
D.
,
Bahl
,
C.
,
Bauer
,
T.
,
Lehmann
,
D.
, and
Steinmann
,
W.
,
2010
, “
Thermal Energy Storage for Direct Steam Generation
,”
Sol. Energy
,
85
, pp.
627
633
.10.1016/j.solener.2010.08.015
7.
Laing
,
D.
,
Steinmann
,
W.
,
Viebahn
,
P.
,
Gräter
,
F.
, and
Bahl
,
C.
,
2010
, “
Economic Analysis and Life Cycle Assessment of Concrete Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
132
(4)
, p.
010131
. 10.1115/1.4001404
8.
Warerkar
,
S.
,
Schmitz
,
S.
,
Goettsche
,
J.
,
Hoffschmidt
,
B.
,
Reißel
,
M.
, and
Tamme
,
R.
,
2011
, “
Air-Sand Heat Exchanger for High-Temperature Storage
,”
ASME J. Sol. Energy Eng.
,
133
, p.
210101
.10.1115/1.4003583
9.
Siegel
,
N.
, and
Kolb
,
G.
,
2008
, “
Design and On-Sun Testing of a Solid Particle Receiver Prototype
,”
Proceedings of Energy Sustainability 2008
, Jacksonville, FL, August 10–14,
ASME
Paper No. ES2008-54090, pp.
329
334
. 10.1115/ES2008-54090
10.
Ho
,
C.
,
Khalsa
,
S.
, and
Siegel
,
N.
,
2009
, “
Modeling On-Sun Tests of a Prototype Solid Particle Receiver for Concentrating Solar Power Processes and Storage
,”
Proceedings of Energy Sustainability 2009
,
San Francisco, CA
, July 19–23,
ASME
Paper No. ES2009-90035, pp.
543
550
. 10.1115/ES2009-90035
11.
Spelt
,
J.
,
Brennen
,
C.
, and
Sabersky
,
R.
,
1982
, “
Heat Transfer to Flowing Granular Material
,”
Int. J. Heat Mass Transfer
,
25
, pp.
791
796
.10.1016/0017-9310(82)90091-6
12.
Sullivan
,
W.
, and
Sabersky
,
R.
,
1975
, “
Heat Transfer to Flowing Granular Material
,”
Int. J. Heat Mass Transfer
,
18
, pp.
97
107
.10.1016/0017-9310(75)90012-5
13.
Takeuchi
,
H.
,
1996
, “
Particles Flow Pattern and Local Heat Transfer Around Tube in Moving Bed
,”
AIChE J.
,
42
, pp.
1621
1626
.10.1002/aic.690420613
14.
Niegsch
,
J.
,
Köneke
,
D.
, and
Weinspach
,
P.
,
1994
, “
Heat Transfer and Flow of Bulk Solids in a Moving Bed
,”
Chem. Eng. Process.
,
33
, pp.
73
89
.10.1016/0255-2701(94)85006-2
15.
Yaws
,
C. L.
,
2010
,
Yaws' Transport Properties of Chemicals and Hydrocarbons
,
electronic edition
,
Knovel
,
New York
.
16.
Al-Ansary
,
H.
,
Jeter
,
S.
,
Sadowski
,
D.
,
Alrished
,
A.
,
Golob
,
M.
,
El-Leathy
,
A.
, and
Al-Suhaibani
,
Z.
, “
Experimental Study of a Sand-Air Heat Exchanger for Use With a High Temperature Solar Gas Turbine System
,”
2011 Solar PACES Conference
,
Granada, Spain
, September 20–23.
17.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken
, NJ, Chap. 3, p.
150
.
18.
Klein
,
S. A.
,
2011
, “
Engineering Equations Solver (EES)
,”
F-Chart Software
, www.fChart.com
You do not currently have access to this content.