The growing interest in large-scale solar power production has led to a renewed exploration of thermal storage technologies. In a thermocline storage system, heat transfer fluid (HTF) from the collection field is simultaneously stored at both excited and dead thermal states inside a single tank by exploiting buoyancy forces. A granulated porous medium included in the tank provides additional thermal mass for storage and reduces the volume of HTF required. While the thermocline tank offers a low-cost storage option, thermal ratcheting of the tank wall (generated by reorientation of the granular material from continuous thermal cycling) poses a significant design concern. A comprehensive simulation of the 170 MWht thermocline tank used in conjunction with the Solar One pilot plant is performed with a multidimensional two-temperature computational fluid dynamics model to investigate ratcheting potential. In operation from 1982 to 1986, this tank was subject to extensive instrumentation, including multiple strain gages along the tank wall to monitor hoop stress. Temperature profiles along the wall material are extracted from the simulation results to compute hoop stress via finite element models and compared with the original gage data. While the strain gages experienced large uncertainty, the maximum predicted hoop stress agrees to within 6.8% of the maximum stress recorded by the most reliable strain gages.

References

References
1.
Libby
,
C.
,
2010
,
Solar Thermocline Storage Systems: Preliminary Design Study
,
Electric Power Research Institute
,
Palo Alto, CA
, Project 1019581.
2.
Herrmann
,
U.
, and
Kearney
,
D. W
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
145
152
.10.1115/1.1467601
3.
Brosseau
,
D.
,
Kelton
,
J. W.
,
Ray
,
D.
,
Edgar
,
M.
,
Chisman
,
K.
, and
Emms
,
B.
,
2005
, “
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
207
, pp.
109
116
.10.1115/1.1824107
4.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
Appl. Energy
,
88
, pp.
2098
2105
.10.1016/j.apenergy.2010.12.031
5.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
, pp.
974
985
.10.1016/j.solener.2010.03.007
6.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Molten-Salt Thermal Energy Storage in Thermocline Under Different Environmental Boundary Conditions
,”
Appl. Energy
,
87
, pp.
3322
3329
.10.1016/j.apenergy.2010.04.024
7.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2012
, “
Cyclic Operation of Molten-Salt Thermal Energy Storage in Thermoclines for Solar Power Plants
,” Appl. Energy (in press).
8.
Gabbrielli
,
R.
, and
Zamparelli
,
C.
,
2009
, “
Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
131
, p.
041001
.10.1115/1.3197585
9.
Radosevich
,
L. G.
,
1988
, “
Final Report on the Power Production Phase of the 10 MWe Solar Thermal Central Receiver Pilot Plant
,” Sandia National Laboratories, Report No. SAND87-8022.
10.
Honeywell Energy Resources Center
,
1977
, “
Solar Pilot Plant, Phase 1. Preliminary Design Report. Thermal Storage Subsystem
,” Vol. 5, Contract Report, Report No. SAN1109-87.
11.
McDonnell Douglas Astronautics Company
,
1986
, “
10 MWe Solar Thermal Central Receiver Pilot Plant Mode 5 (Test 1150) and Mode 6 (Test 1160) Test Report
,” Contract Report, Report No. SAND86-8175.
12.
Faas
,
S. E.
,
Thorne
,
L. R.
,
Fuchs
,
E. A.
, and
Gilbertsen
,
N. D.
,
1986
, “
10 MWe Solar Thermal Central Receiver Pilot Plant: Thermal Storage Subsystem Evaluation—Final Report
,” Sandia National Laboratories, Report No. SAND86-8212.
13.
Online Materials Information Resource, 2011, http://www.matweb.com
14.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Beach
,
New York
.
16.
Weather Underground, 2011, http://www.wunderground.com/history/
17.
ASTM Standard A537
,
2008
,
Standard Specification for Pressure Vessel Plates, Heat-Treated, Carbon-Manganese-Silicon Steel
,
ASTM International
,
West Conshohocken, PA
.
18.
fluent 12.1.4 Documentation
,
2011
,
Fluent Inc.
,
Lebanon, NH
.
19.
ansys 12.1 Documentation
,
2011
,
ANSYS Inc.
, Lebanon, NH.
20.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2004
, “
A Two-Temperature Model for Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
,
126
, pp.
628
637
.10.1115/1.1773194
21.
Beckermann
,
C.
, and
Viskanta
,
R.
,
1988
, “
Natural Convection Solid/Liquid Phase Change in Porous Media
,”
Int. J. Heat Mass Transfer
,
31
, pp.
35
46
.10.1016/0017-9310(88)90220-7
You do not currently have access to this content.