The steam reforming of methane is considered as one of the hydrogen production methods with solar thermal energy. In this study, lab-scale solar steam reforming of methane was examined under direct solar radiation from a solar simulator. A volumetric receiver–reactor with quartz window was used and three different catalysts were prepared, ICI 46-6, Ru/Al2O3, and Pd/Al2O3. An SiC foam absorber was employed as the catalyst supporter, and Al2O3 was applied by wash-coating onto the SiC foam support. The characteristics of the steam reforming of methane in a solar receiver were investigated with respect to reaction temperature, space velocity, and steam/methane ratio. The composition of the product gas was analyzed by gas chromatography. From the experiment, it was observed that methane conversion was increased with temperature and above the temperature of 700 °C, methane conversion increased significantly and approached equilibrium conversion. The catalytic activities of the three catalysts were estimated in the same reaction conditions, and the Ru/Al2O3 showed the highest activity followed by the Pd/Al2O3. The commercial ICI catalyst showed the lowest activity.

References

1.
Berman
,
A.
,
Karn
,
R. K.
, and
Epstein
,
M.
,
2006
, “
A New Catalyst System for High-Temperature Solar Reforming of Methane
,”
Energy Fuels
,
20
, pp.
455
462
.10.1021/ef0501997
2.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
, pp.
567
597
.10.1016/S0360-1285(03)00059-5
3.
Moller
,
S.
,
Kaucic
,
D.
, and
Sattler
,
C.
,
2006
, “
Hydrogen Production by Solar Reforming of Natural Gas: A Comparison Study of Two Possible Process Configurations
,”
ASME J. Sol. Energy Eng.
,
128
, pp.
16
23
.10.1115/1.2164447
4.
van Beurden
,
P.
,
2004
, “
On the Catalytic Aspects of Steam-Methane Reforming: A Literature Survey
,”
Energy Research Centre of the Netherlands (ECN), Petten
,
The Netherlands
, Report No. ECN-I-04-003.
5.
Armor
,
J. N.
,
1999
, “
The Multiple Roles for Catalysis in the Production of H2
,”
Appl. Catal., A
,
176
, pp.
159
176
.10.1016/S0926-860X(98)00244-0
6.
Hu
,
J.
,
King
,
D. L.
,
Wang
,
Y.
, and
Holladay
,
J. D.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
, pp.
244
260
.10.1016/j.cattod.2008.08.039
7.
Agrafiotis
,
C. C.
,
Pagkoura
,
C.
,
Lorenzou
,
S.
,
Kostoglou
,
M.
, and
Konstandopoulos
,
A. G.
,
2007
, “
Hydrogen Production in Solar Reactors
,”
Catal. Today
,
127
, pp.
265
277
.10.1016/j.cattod.2007.06.039
8.
Kodama
,
T.
,
Kiyama
,
A.
, and
Shimizu
,
K.-I.
,
2003
, “
Catalytically Activated Metal Foam Absorber for Light-to-Chemical Conversion via Solar Reforming of Methane
,”
Energy Fuels
,
17
(1)
, pp.
13
17
. 10.1021/ef0200525
9.
Kodama
,
T.
,
Moriyama
,
T.
,
Shimoyama
,
T.
, and
Gokon
,
N.
,
2005
, “
Ru/Ni-Mg-O Catalyzed SiC-Foam Absorber for Solar Reforming Receiver-Reactor
,”
ASME J. Sol. Energy Eng.
,
128
(3)
, pp.
318
325
. 10.1115/1.2210497
10.
Anikeev
,
V. I.
, and
Kuzin
,
N. A.
,
1998
, “
Catalytic Thermochemical Reactor/Receiver for Solar Reforming of Natural Gas: Design and Performance
,”
Sol. Energy
,
63
(
2
), pp.
97
104
.10.1016/S0038-092X(98)00050-4
11.
Kodama
,
T.
,
Kiyama
,
A.
,
Moriyama
,
T.
,
Yokoyama
,
T.
,
Shimizu
,
K. I.
,
Andou
,
H.
, and
Satou
,
N.
,
2003
, “
Ni-Mg-O Catalyst Driven by Direct Light Irradiation for Catalytically-Activated Foam Absorber in a Solar Reforming Receiver-Reactor
,”
Energy Fuels
,
17
, pp.
914
921
.10.1021/ef020270y
12.
Gokon
,
N.
,
Osawa
,
Y.
,
Nakazawa
,
D.
, and
Kodama
,
T.
,
2009
, “
Kinetics of CO2 Reforming of Methane by Catalytically Activated Metallic Foam Absorber for Solar Receiver-Reactors
,”
Int. J. Hydrogen Energy
,
34
, pp.
1787
1800
.10.1016/j.ijhydene.2008.12.018
13.
Buck
,
R.
,
Muir
,
J.
,
Hogan
,
R.
, and
Skocypec
,
R.
,
1991
, “
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/Reactor: The CAESAR Project
,”
Sol. Energy Mater.
,
24
, pp.
449
463
.10.1016/0165-1633(91)90082-V
14.
Abele
,
M.
,
Bauer
,
H.
,
Buck
,
R.
,
Tamme
,
R.
, and
Wörner
,
A.
,
1996
, “
Design and Test Results of a Receiver–Reactor for Solar Methane Reforming
,”
ASME Solar Energy Conference, San Antonio, TX, March 31–April 1
, pp.
339
346
.
15.
Wörner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver–Reactor
,”
Catal. Today
,
46
, pp.
165
174
.10.1016/S0920-5861(98)00338-1
16.
Berman
,
A.
,
Karn
,
R. K.
, and
Epstein
,
M.
,
2007
, “
Steam Reforming of Methane on a Ru/Al2O3 Catalyst Promoted With Mn Oxides for Solar Hydrogen Production
,”
Green Chem.
,
9
, pp.
626
631
.10.1039/b613708n
17.
Dietz
,
W. A.
,
1967
, “
Response Factors for Gas Chromatographic Analyses
,”
J. Chromatogr. Sci.
,
5
(2)
, pp.
68
71
. 10.1093/chromsci/5.2.68
18.
Berman
,
A.
, and
Epstein
,
M.
,
2005
, “
Kinetics of Steam Reforming of Methane on Ru/Al2O3 Catalyst Promoted With Mn Oxides
,”
Appl. Catal.
, A,
282
, pp.
73
83
.10.1016/j.apcata.2004.12.003
19.
Vagia
,
E. C.
, and
Lemonidou
,
A. A.
,
2007
, “
Thermodynamic Analysis of Hydrogen Production via Steam Reforming of Selected Components of Aqueous Bio-Oil Fraction
,”
Int. J. Hydrogen Energy
,
32
, pp.
212
223
.10.1016/j.ijhydene.2006.08.021
20.
Effendi
,
A.
,
Hellgardt
,
K.
,
Zhang
,
Z. G.
, and
Yoshida
,
T.
,
2005
, “
Optimising H2 Production From Model Biogas via Combined Steam Reforming and CO Shift Reactions
,”
Fuel
,
84
, pp.
869
874
.10.1016/j.fuel.2004.12.011
21.
Rostrup-Nielsen
,
J. R.
,
1993
, “
Production of Synthesis Gas
,”
Catal. Today
,
18
, pp.
305
324
.10.1016/0920-5861(93)80059-A
22.
Souza
,
T. R. O. D.
,
Brito
,
S. M. D. O.
, and
Andrade
,
H. M. C.
,
1999
, “
Zeolite Catalysts for the Water Gas Shift Reaction
,”
Appl. Catal.
, A,
178
, pp.
7
15
.10.1016/S0926-860X(98)00280-4
You do not currently have access to this content.