The present study investigates the feasibility, efficiency, and system design of a hybrid solar system generating electric power for stationary applications such as residential buildings. The system is fed by methanol and combines methanol steam reforming and proton exchange membrane (PEM) fuel cells with solar collectors to generate the required heat for the steam reforming. The synergies of these technologies lead to a highly efficient system with significantly larger power densities compared to conventional systems and generate tremendous advantages in terms of installation and operation costs. The present investigation describes the entire proposed system and its components and presents first analytical, numerical, and experimental results of a larger project to prove the feasibility of such a system by analyzing first a bench test demonstrator generating around 10 W of electric power and finally a prototype for an entire single-family household. It is shown that the methanol-to-electricity efficiency of the entire system is above 50%.

References

References
1.
Aartun
,
I.
,
Silberova
,
B.
,
Venvik
,
H.
,
Pfeifer
,
P.
,
Gorke
,
O.
,
Schubert
,
K.
, and
Holmen
,
A.
,
2005
, “
Hydrogen Production From Propane in Rh-Impregnated Metallic Microchannel Reactors and Alumina Foams
,”
Catal. Today
,
105
(
3–4
), pp.
469
478
.10.1016/j.cattod.2005.06.025
2.
Bieberle-Huetter
,
A.
,
Beckel
,
D.
,
Infortuna
,
A.
,
Muecke
,
U.
,
Rupp
,
J.
,
Gauckler
,
L.
,
Rey-Mermet
,
S.
,
Muralt
,
P.
,
Bieri
,
N.
,
Hotz
,
N.
,
Stutz
,
M. J.
,
Poulikakos
,
D.
,
Heeb
,
P.
,
Mueller
,
P.
,
Bernard
,
A.
,
Gmuer
,
R.
, and
Hocker
,
T.
,
2008
, “
A Micro-Solid Oxide Fuel Cell System as Battery Replacement
,”
J. Power Sources
,
177
(
1
), pp.
123
130
.10.1016/j.jpowsour.2007.10.092
3.
Chaniotis
,
A.
, and
Poulikakos
,
D.
,
2005
, “
Modeling and Optimization of Catalytic Partial Oxidation Methane Reforming for Fuel Cells
,”
J. Power Sources
,
142
(
1–2
), pp.
184
193
.10.1016/j.jpowsour.2004.10.018
4.
Hickman
,
D.
, and
Schmidt
,
L.
,
1993
, “
Production of Syngas by Direct Catalytic-Oxidation of Methane
,”
Science
,
259
(
5093
), pp.
343
346
.10.1126/science.259.5093.343
5.
Hotz
,
N.
,
Stutz
,
M. J.
,
Loher
,
S.
,
Stark
,
W.
, and
Poulikakos
,
D.
,
2007
, “
Syngas Production From Butane Using a Flame-Made Rh/Ce0.5Zr0.5O2 Catalyst
,”
Appl. Catal.
, B,
73
(
3–4
), pp.
336
344
.10.1016/j.apcatb.2007.01.001
6.
Laosiripojana
,
N.
, and
Assabumrungrat
,
S.
,
2006
, “
Hydrogen Production From Steam and Autothermal Reforming of LPG Over High Surface Area Ceria
,”
J. Power Sources
,
158
(
2
), pp.
1348
1357
.10.1016/j.jpowsour.2005.10.058
7.
Silberova
,
B.
,
Venvik
,
H.
,
Walmsley
,
J.
,
Holmen
,
A.
,
2005
, “
Small-Scale Hydrogen Production From Propane
,”
Catal. Today
,
100
(
3–4
), pp.
457
462
.10.1016/j.cattod.2004.09.078
8.
Amphlett
,
J. C.
,
Creber
,
K. A. M.
,
Davis
,
J. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Stokes
,
D. M.
,
1994
, “
Hydrogen-Production by Steam Reforming of Methanol for Polymer Electrolyte Fuel-Cells
,”
Int. J. Hydrogen Energy
,
19
(
2
), pp.
131
137
.10.1016/0360-3199(94)90117-1
9.
Kundu
,
A.
,
Jang
,
J.
,
Lee
,
H.
,
Kim
,
S.
,
Gil
,
J.
,
Jung
,
C.
, and
Oh
,
Y.
,
2006
, “
MEMS-Based Micro-Fuel Processor for Application in a Cell Phone
,”
J. Power Sources
,
162
(
1
), pp.
572
578
.10.1016/j.jpowsour.2006.06.075
10.
Lee
,
M. T.
,
Greif
,
R.
,
Grigoropoulos
,
C. P.
,
Park
,
H. G.
, and
Hsu
,
F. K.
,
2007
, “
Transport in Packed-Bed and Wall-Coated Steam-Methanol Reformers
,”
J. Power Sources
,
166
(
1
), pp.
194
201
.10.1016/j.jpowsour.2007.01.007
11.
Lee
,
M. T.
,
Hwang
,
D. J.
,
Greif
,
R.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Nanocatalyst Fabrication and the Production of Hydrogen by Using Photon Energy
,”
Int. J. Hydrogen Energy
,
34
(
4
), pp.
1835
1843
.10.1016/j.ijhydene.2008.12.022
12.
Liguras
,
D.
,
Goundani
,
K.
, and
Verykios
,
X.
,
2004
, “
Production of Hydrogen for Fuel Cells by Catalytic Partial Oxidation of Ethanol Over Structured Ni Catalysts
,”
J. Power Sources
,
130
(
1–2
), pp.
30
37
.10.1016/j.jpowsour.2003.12.008
13.
Pattekar
,
A.
, and
Kothare
,
M.
,
2005
, “
A Radial Microfluidic Fuel Processor
,”
J. Power Sources
,
147
(
1–2
), pp.
116
127
.10.1016/j.jpowsour.2005.01.024
14.
Suh
,
J. S.
,
Lee
,
M. T.
,
Greif
,
R.
, and
Grigoropoulos
,
C. P.
,
2007
, “
A Study of Steam Methanol Reforming in a Microreactor
,”
J. Power Sources
,
173
(
1
), pp.
458
466
.10.1016/j.jpowsour.2007.04.038
15.
Hotz
,
N.
,
Lee
,
M. T.
,
Grigoropoulos
,
C. P.
,
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2006
, “
Exergetic Analysis of Fuel Cell Micropowerplants Fed by Methanol
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2397
2411
.10.1016/j.ijheatmasstransfer.2006.03.007
16.
Yilanci
,
A.
,
Dincer
,
I.
, and
Ozturk
,
H. K.
,
2008
, “
Performance Analysis of a PEM Fuel Cell Unit in a Solar-Hydrogen System
,”
Int. J. Hydrogen Energy
,
33
(
24
), pp.
7538
7552
.10.1016/j.ijhydene.2008.10.016
17.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2008
, “
Exergy Analysis of a Gas Turbine Cycle With Steam Generation for Methane Conversion Within Solid Oxide Fuel Cells
,”
J. Fuel Cell Sci. Technol.
,
5(3)
, p.
031005
.10.1115/1.2894469
18.
Obara
,
S.
, and
Tanno
,
I.
,
2008
, “
Exergy Analysis of a Regional-Distributed PEM Fuel Cell System
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2300
2310
.10.1016/j.ijhydene.2008.02.036
19.
Janardhanan
,
V. M.
,
Heuveline
,
V.
, and
Deutschmann
,
O.
,
2007
, “
Performance Analysis of a SOFC Under Direct Internal Reforming Conditions
,”
J. Power Sources
,
172
(
1
), pp.
296
307
.10.1016/j.jpowsour.2007.07.008
20.
Hotz
,
N.
,
Senn
,
S. M.
, and
Poulikakos
,
D.
,
2006
, “
Exergy Analysis of a Solid Oxide Fuel Cell Micropowerplant
,”
J. Power Sources
,
158
(
1
), pp.
333
347
.10.1016/j.jpowsour.2005.09.023
21.
Farhad
,
S.
, and
Hamdullahpur
,
F.
,
2009
, “
Developing Fuel Map to Predict the Effect of Fuel Composition on the Maximum Efficiency of Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
(
2
), pp.
632
638
.10.1016/j.jpowsour.2009.03.054
22.
Vargas
,
J. V. C.
, and
Bejan
,
A.
,
2004
, “
Thermodynamic Optimization of Internal Structure in a Fuel Cell
,”
Int. J. Energy Res.
,
28
(
4
), pp.
319
339
.10.1002/er.967
23.
Mitchell
,
R. E.
,
Gur
,
T. M.
, and
Lee
,
A. C.
,
2009
, “
Thermodynamic Analysis of Gasification-Driven Direct Carbon Fuel Cells
,”
J. Power Sources
,
194
(
2
), pp.
774
785
.10.1016/j.jpowsour.2009.05.039
24.
Rashidi
,
R.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Berg
,
P.
,
2009
, “
Performance Evaluation of Direct Methanol Fuel Cells for Portable Applications
,”
J. Power Sources
,
187
(
2
), pp.
509
516
.10.1016/j.jpowsour.2008.11.044
25.
Toonssen
,
R.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
,
2009
, “
Decentralized Generation of Electricity From Biomass With Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
194
(
1
), pp.
456
466
.10.1016/j.jpowsour.2009.05.044
26.
Ameri
,
M.
,
Ahmadi
,
P.
, and
Hamidi
,
A.
,
2009
, “
Energy, Exergy and Exergoeconomic Analysis of a Steam Power Plant: A Case Study
,”
Int. J. Energy Res.
,
33
(
5
), pp.
499
512
.10.1002/er.1495
27.
Dincer
,
I.
,
Kanoglu
,
M.
, and
Rosen
,
M. A.
,
2007
, “
Understanding Energy and Exergy Efficiencies for Improved Energy Management in Power Plants
,”
Energy Policy
,
35
(
7
), pp.
3967
3978
.10.1016/j.enpol.2007.01.015
28.
Gnanapragasam
,
N. V.
,
Reddy
,
B. V.
, and
Rosen
,
M. A.
,
2009
, “
Optimum Conditions for a Natural Gas Combined Cycle Power Generation System Based on Available Oxygen When Using Biomass as Supplementary Fuel
,”
Energy
,
34
(
6
), pp.
816
826
.10.1016/j.energy.2009.03.006
29.
Kanoglu
,
M.
, and
Dincer
,
I.
,
2009
, “
Performance Assessment of Cogeneration Plants
,”
Energy Convers. Manage.
,
50
(
1
), pp.
76
81
.10.1016/j.enconman.2008.08.029
30.
Khaliq
,
A.
, and
Choudhary
,
K.
,
2009
, “
Exergy Analysis of the Regenerative Gas Turbine Cycle Using Absorption Inlet Cooling and Evaporative Aftercooling
,”
J. Energy Inst.
,
82
(
3
), pp.
159
167
.10.1179/014426009X12448168550262
31.
Calise
,
F.
,
Palombo
,
A.
, and
Vanoli
,
L.
,
2006
, “
Design and Partial Load Exergy Analysis of Hybrid SOFC-GT Power Plant
,”
J. Power Sources
,
158
(
1
), pp.
225
244
.10.1016/j.jpowsour.2005.07.088
32.
Haseli
,
Y.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2008
, “
Thermodynamic Modeling of a Gas Turbine Cycle Combined With a Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5811
5822
.10.1016/j.ijhydene.2008.05.036
33.
Rashidi
,
R.
,
Berg
,
P.
, and
Dincer
,
I.
,
2009
, “
Performance Investigation of a Combined MCFC System
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4395
4405
.10.1016/j.ijhydene.2009.03.038
34.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Performance Analysis of Photovoltaic Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1884
1897
.10.1016/j.rser.2009.01.009
35.
Joshi
,
A. S.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Assessment of Photovoltaic Systems
,”
Sol. Energy
,
83
(
8
), pp.
1139
1149
.10.1016/j.solener.2009.01.011
36.
Kumar
,
S.
, and
Tiwari
,
G. N.
,
2009
, “
Thermal Modelling, Validation and Exergetic Analysis of a Hybrid Photovoltaic/Thermal (PV/T) Active Solar Still
,”
Int. J. Exergy
,
6
(
4
), pp.
567
591
.10.1504/IJEX.2009.026678
37.
Tiwari
,
A.
,
Sandhu
,
G. S.
,
Barnwal
,
P.
, and
Sodha
,
M. S.
,
2009
, “
Energy and Exergy Metrics Analyses of Hybrid Photovoltaic-Thermal Air Collector
,”
Int. J. Exergy
,
6
(
5
), pp.
729
748
.10.1504/IJEX.2009.027499
38.
Erek
,
A.
, and
Dincer
,
I.
,
2009
, “
A New Approach to Energy and Exergy Analyses of Latent Heat Storage Unit
,”
Heat Transfer Eng.
,
30
(
6
), pp.
506
515
.10.1080/01457630802529271
39.
Jack
,
M. W.
, and
Wrobel
,
J.
,
2009
, “
Thermodynamic Optimization of a Stratified Thermal Storage Device
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2344
2349
.10.1016/j.applthermaleng.2008.11.021
40.
Kousksou
,
T.
,
El Rhafiki
,
T.
,
Arid
,
A.
,
Schall
,
E.
, and
Zeraouli
,
Y.
,
2008
, “
Power, Efficiency, and Irreversibility of Latent Energy Systems
,”
J. Thermophys. Heat Transfer
,
22
(
2
), pp.
234
239
.10.2514/1.31227
41.
Mawire
,
A.
,
McPherson
,
M.
, and
van den Heetkamp
,
R. R. J.
,
2009
, “
Thermal Performance of a Small Oil-In-Glass Tube Thermal Energy Storage System During Charging
,”
Energy
,
34
(
7
), pp.
838
849
.10.1016/j.energy.2009.02.016
42.
Hotz
,
N.
,
Zimmerman
,
R.
,
Weinmueller
,
C.
,
Lee
,
M.-T.
,
Grigoropoulos
,
C. P.
,
Rosengarten
,
G.
, and
Poulikakos
,
D.
,
2010
, “
Exergetic Analysis and Optimization of a Solar-Powered Reformed Methanol Fuel Cell Micro-Powerplant
,”
J. Power Sources
,
195
(
6
), pp.
1676
1687
.10.1016/j.jpowsour.2009.09.055
43.
Electricity Storage Association, Technologies Database
,
2009
, http://www.electricitystorage.org/site/technologies/technology_comparisons
44.
Hotz
,
N.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
, and
Ko
,
S. H.
,
2010
, “
Exergetic Analysis of Solar-Powered Hybrid Energy Conversion and Storage Scenarios for Stationary Applications
,”
4th International Conference on Energy Sustainability (ASME ES2010)
,
Phoenix
,
AZ
,
May 17–22
,
ASME
Paper No. ES2010-90255, pp.
879
888
. 10.1115/ES2010-90255
45.
Renon
,
H.
,
Eckert
,
C. A.
, and
Prausnitz
,
J. M.
,
1968
, “
Liquid-Liquid and Vapor-Liquid Equilibria for Binary and Ternary Systems With Dibutyl Ketone Dimethyl Sulfoxide N-Hexane and 1-Hexene
,”
Ind. Eng. Chem. Process Des. Dev.
,
7
(
2
), pp.
220
225
.10.1021/i260026a011
46.
Renon
,
H.
,
Eckert
,
C. A.
, and
Prausnitz
,
J. M.
,
1967
, “
Molecular Thermodynamics of Simple Liquids
,”
Ind. Eng. Chem. Fundam.
,
6
(
1
), pp.
52
58
.10.1021/i160021a008
47.
Renon
,
H.
, and
Prausnitz
,
J. M.
,
1968
, “
Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures
,”
AIChE J.
,
14
(
1
), pp.
135
144
.10.1002/aic.690140124
48.
Horstmann
,
S.
,
Mougin
,
P.
,
Lecomte
,
F.
,
Fischer
,
K.
, and
Gmehling
,
J.
,
2002
, “
Phase Equilibrium and Excess Enthalpy Data for the System Methanol+2,2’-Diethanolamine Plus Water
,”
J. Chem. Eng. Data
,
47
(
6
), pp.
1496
1501
.10.1021/je020085e
49.
Moran
,
M. J.
, and
Shapiro
,
D. N.
,
1999
,
Fundamentals of Engineering Thermodynamics
,
4th ed.
,
Wiley
,
New York
.
50.
American Institute of Chemical Engineers/Design Institute for Physical Properties
,
2009
, DIPPR® Project 801—Evaluated Standard Thermophysical Property Values, Full Version.
51.
Zimmerman
,
R.
,
Morrison
,
G.
, and
Rosengarten
,
G.
,
2008
, “
A Solar Powered Microreactor for Hydrogen Production by Methanol Reforming
,”
Proceedings of ASME 2nd International Conference on Energy Sustainability
,
Jacksonville, FL
,
ASME
Paper No. ES2008-54202, pp.
391
396
. 10.1115/ES2008-54202
52.
Kahlich
,
M. J.
,
Gasteiger
,
H. A.
, and
Behm
,
R. J.
,
1999
, “
Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas Over Au/Α-Fe2O3
,”
J. Catal.
,
182
, pp.
430
440
.10.1006/jcat.1998.2333
53.
RIX Industries, Benicia, CA
, http://www.rixindustries.com
54.
PDC Machines, Warminster, PA
, http://www.pdcmachines.com
55.
Suction Gas Engine MFG, Tokyo, Japan
, http://www.suction.co.jp
56.
Canadian Purcell Machinery, Eastport, ID
, http://www.canadianpurcell.com
57.
Gurau
,
V.
,
Barbir
F.
, and
Liu
,
H. T.
,
2000
,
An Analytical Solution of a Half-Cell Model for PEM Fuel Cells
,”
J. Electrochem. Soc.
,
147
(
7
), pp.
2468
2477
. 10.1149/1.1393555
58.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.10.1149/1.2085971
59.
Press
,
W. H.
,
1976
, “
Theoretical Maximum for Energy From Direct and Diffuse Sunlight
,”
Nature
,
264
, pp.
734
735
.10.1038/264734a0
60.
Edgerton
,
R. H.
,
1980
, “
Second Law and Radiation
,”
Energy
,
5
, pp.
693
707
.10.1016/0360-5442(80)90089-4
You do not currently have access to this content.