This paper presents experimental evaluation of ammonia receiver geometries with a 9 m2 dish concentrator. The experiments involved varying the geometric arrangement of reactor tubes in a thermochemical reactor built from a series of tubes arranged in a conical shape inside a cavity receiver. Differences in conical arrangement were found to affect the efficiency of energy conversion. The solar-to-chemical efficiency gain obtained by varying the receiver geometry was up to 7% absolute. From this, it is apparent that geometric optimizations are worth pursuing since the resulting efficiency gains are achieved with no increase in costs of manufacture for receivers. The experimental results and methodology can be used when developing receivers for larger dish concentrators, such as the second generation 500 m2 dish concentrator developed at the Australian National University.

References

References
1.
Lovegrove
,
K.
,
Burgess
,
G.
, and
Pye
,
J.
,
2011
, “
A New 500 m2 Paraboloidal Dish Solar Concentrator
,”
Sol. Energy
,
85
(
4
),
pp.
620
626
.10.1016/j.solener.2010.01.009
2.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Soldiani
,
I.
, and
Kreetz
,
H.
,
2004
, “
Developing Ammonia Based Thermochemical Energy Storage for Dish Power Plants
,”
Sol. Energy
,
76
,
pp.
331
337
.10.1016/j.solener.2003.07.020
3.
Dunn
,
R.
,
Lovegrove
,
K.
, and
Burgess
,
G.
,
2012
, “
A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
),
pp.
391
400
.10.1109/JPROC.2011.2166529
4.
Dunn
,
R.
,
Hearps
,
P.
, and
Wright
,
M.
,
2012
, “
Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage
,”
Proc. IEEE
,
100
(
2
),
pp.
504
515
.10.1109/JPROC.2011.2163739
5.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
,
1993
, “
Solar Energy Storage Via a Closed-Loop Chemical Heat Pipe
,”
Sol. Energy
,
50
(
2
),
pp.
179
189
.10.1016/0038-092X(93)90089-7
6.
Muir
,
J.
,
Hogan
,
R.
,
Skocypec
,
R.
, and
Buck
,
R.
,
1994
, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I—Test and Analysis
,”
Sol. Energy
,
52
(
6
),
pp.
467
477
.10.1016/0038-092X(94)90654-8
7.
McNaughton
,
R.
,
McEvoy
,
S.
,
Hart
,
G.
,
Kim
,
J.
,
Wong
,
K.
, and
Stein
,
W.
,
2010
, “
Experimental Results of Solar Reforming on the 200 kW SolarGas Reactor
,”
Proceedings of the 16th SolarPACES Conference
,
Perpignan, France
.
8.
Rodat
,
S.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2010
, “
Methane Decarbonization in Indirect Heating Solar Reactors (10–50 kW) for a CO2-Free Production of Hydrogen and Carbon Black
,”
Proceedings of the 16th SolarPACES Conference
,
Perpignan, France
.
9.
Gokon
,
N.
,
Yamawaki
,
Y.
,
Nakazawa
,
D.
, and
Kodama
,
T.
,
2010
, “
Ni/MgO-Al2O3 and Ni-Mg-O Catalyzed SiC Foam Absorbers for High Temperature Solar Reforming of Methane
,”
Int. J. Hydrogen Energy
,
35
(
14
),
pp.
7441
7453
.10.1016/j.ijhydene.2010.04.040
10.
Meier
,
A.
,
2009
, “
Task II: Solar Chemistry Research
,”
International Energy Agency (IEA) Solar Power and Chemical Energy Systems Annual Report 2009
,
C.
Richter
, ed.,
Deutsches Zentrum für Luft- und Raumfahrt e.V., Köln, Germany
.
11.
Meier
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Solar Thermochemical Production of Fuels
,”
Adv. Sci. Technol.
,
74
,
pp.
303
312
.10.4028/www.scientific.net/AST.74.303
12.
Wong
,
B.
,
Brown
,
L.
,
Schaube
,
F.
,
Tamme
,
R.
, and
Sattler
,
C.
,
2010
, “
Oxide Based Thermochemical Heat Storage
,”
Proceedings of the 16th SolarPACES Conference
,
Perpignan, France
.
13.
Schaube
,
F.
,
Wörner
,
A.
, and
Tamme
,
R.
,
2010
, “
High Temperature Thermo-chemical Heat Storage for CSP Using Gas-Solid Reactions
,”
Proceedings of the 16th SolarPACES Conference
,
Perpignan, France
.
14.
OptiCAD Corporation
,
2008
,
OptiCAD—Optical Analysis Program User's Guide Version 10
,
Santa Fe, NM
.
15.
Ulmer
,
S.
,
Reinalter
,
W.
,
Heller
,
P.
,
Lüpfert
,
E.
, and
Martínez
,
D.
,
2002
, “
Beam Characterization and Improvement With a Flux Mapping System for Dish Concentrators
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
182
188
.10.1115/1.1464881
16.
Taumoefolau
,
T.
,
Paitoonsurikarn
,
S.
,
Hughes
,
G.
, and
Lovegrove
,
K.
,
2004
, “
Experimental Investigation of Natural Convection Heat Loss From a Model Solar Concentrator Cavity Receiver
,”
ASME J. Sol. Energy Eng.
,
126
,
pp.
801
807
.10.1115/1.1687403
17.
Taumoefolau
,
T.
,
2004
, “
Experimental Investigation of Convection Loss From a Model Solar Concentrator Cavity Receiver
,”
M.phil thesis
,
Australian National University
,
Canberra, Australia.
18.
Paitoonsurkarn
,
S.
,
Lovegrove
,
K.
,
Hughes
,
G.
, and
Pye
,
J.
,
2011
, “
Numerical Investigation of Natural Convection Loss From Cavity Receivers in Solar Dish Applications
,”
ASME J. Sol. Energy Eng.
,
133
(
2
),
021004
.10.1115/1.4003582
19.
Paitoonsurikarn
,
S.
,
2006
, “
Study of a Dissociation Reactor for an Ammonia-Based Solar Thermal System
,”
Ph.D. thesis
,
Australian National University
,
Canberra, Australia
.
20.
Burgess
,
G.
,
Lovegrove
,
K.
,
Mackie
,
S.
,
Zapata
,
J.
, and
Pye
,
J.
,
2011
, “
Direct Steam Generation Using the SG4 500m2 Paraboloidal Dish Concentrator
,”
Proceedings of the 17th SolarPACES Conference
,
Granada, Spain
.
21.
Paitoonsurikarn
,
S.
, and
Lovegrove
,
K.
,
2006
, “
Effect of Paraboloidal Dish Structure on the Wind Near a Cavity Receiver
,”
Proceedings of the 44th Annual Conference of the Australian and New Zealand Solar Energy Society
,
Canberra
.
22.
Clausing
,
A. M.
,
1983
, “
Convection Losses from Cavity Solar Receivers—Comparisons Between Analytical Predictions and Experimental Results
,”
ASME J. Sol. Energy Eng.
,
105
,
pp.
29
33
.10.1115/1.3266342
23.
Siebers
,
D. L.
, and
Kraabel
,
J. S.
,
1984
, “
Estimating Convective Energy Losses From Solar Central Receivers
,”
Solar Thermal Technology Department, Sandia National Laboratories
,
NM
,
Techincal Report No. SAND-84-8717
.
24.
Ma
,
R. Y.
,
1993
, “
Wind Effects on Convective Heat Loss from a Cavity Receiver for a Parabolic Concentrating Solar Collector
,”
Contractor Report for Sandia National Laboratories
,
Technical Report No. SAND-92-7293
.
25.
Prakash
,
M.
,
Kedare
,
S. B.
, and
Nayak
,
J. K.
,
2009
, “
Investigations on Heat Losses From a Solar Cavity Receiver
,”
Sol. Energy
,
83
,
pp.
157
170
.10.1016/j.solener.2008.07.011
26.
Wu
,
S.-Y.
,
Xiao
,
L.
,
Cao
,
Y.
, and
Li
,
Y.-R.
,
2010
, “
Convection Heat Loss From Cavity Receiver in Parabolic Dish Solar Thermal Power System: A Review
,”
Sol. Energy
,
84
,
pp.
1342
1355
.10.1016/j.solener.2010.04.008
27.
Palumbo
,
R.
,
Keunecke
,
M.
,
Möller
,
S.
, and
Steinfield
,
A.
,
2004
, “
Reflections on the Design of Solar Thermal Chemical Reactors
,”
Energy
,
29
,
pp.
727
744
.10.1016/S0360-5442(03)00180-4
28.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
, Jedamski, J. and
Uhlig
,
R.
,
2008
, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,”
Proceedings of the 14th Concentrating Solar Power SolarPACES Symposium
,
Las Vegas
.
29.
Amsbeck
,
L.
,
Denk
,
T.
,
Ebert
,
M.
,
Gertig
,
C.
,
Heller
,
P.
,
Herrmann
,
P.
,
Jedamski
,
J.
,
John
,
J.
,
Pitz-Paal
,
R.
,
Prosinečki
,
T.
,
Rehn
,
J.
,
Reinalter
,
W.
, and
Uhlig
,
R.
,
2010
, “
Test of a Solar-Hybrid Microturbine System and Evaluation of Storage Deployment
,”
Proceedings of the 16th SolarPACES Conference
,
Perpignan, France
.
You do not currently have access to this content.