A literature review of hybrid solar–fossil fuel power generation is given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel simultaneously, thus excluding the viable alternative of solar thermal plants which use fossil fuels as backup. The review is divided into three main sections: performance metrics, the different concentrated solar receiver technologies and their operating conditions, and the different hybridization schemes. In addition, a new linear combination metric for analysis of hybrid systems, which considers trade-off of different metrics at the fleet level, is presented. This metric is also compared to alternative metrics from multi-objective optimization. Some previous work only evaluates the hybrid cycle at a certain point in time, which can be misleading as this evaluation would not take into account certain aspects of hybrid cycle, such as fluctuating solar supply. Furthermore, almost all previous work designs the hybrid solar–fossil fuel systems for a certain point in time and then evaluates the performance of the system for an entire year. By not taking into account fluctuating solar supply and selling price of electricity in the design of the system, the best possible annual performance of the hybrid cycle may not be reached.

References

References
1.
Sukhatme
,
S. P.
, and
Nayak
,
J. K.
,
2008
,
Solar Energy: Principles of Thermal Collection and Storage
,
McGraw-Hill
,
New York
.
2.
Pitz-Paal
,
R.
,
Dersch
,
J.
, and
Milow
,
B.
,
2004
,
European Concentrated Solar Thermal Road-Mapping
,
Deutsches Zentrum für Luft-und Raumfahrt
,
Bonn, Germany.
3.
Aga
,
V.
,
Boschek
,
E.
, and
Simiano
,
M.
,
2011
, “
The Value of Dispatchability for CSP Plants Under Different Market Scenarios
,”
International SolarPACES Conference, Granada
.
4.
Al-Sakaf
,
O. H.
,
1998
, “
Application Possibilities of Solar Thermal Power Plants in Arab Countries
,”
Renewable Energy
,
14
,
pp.
1
9
.10.1016/S0960-1481(98)00039-1
5.
Mariyappan
,
J.
, and
Anderson
,
D.
,
2001
, “
Solar Thermal Thematic Review
,” The Global Environment Facility (GEF), Washington, D.C.,
Technical Report
.
6.
Thirugnanasambandam
,
M.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2010
, “
A Review of Solar Thermal Technologies
,”
Renewable Sustainable Energy Rev.
,
14
,
pp.
312
322
.10.1016/j.rser.2009.07.014
7.
Harvey
,
L. D.
,
1996
, “
Solar-Hydrogen Electricity Generation and Global CO2 Emission Reduction
,”
Int. J. Hydrogen Energy
,
21
,
pp.
583
595
.10.1016/0360-3199(95)00112-3
8.
Sudiro
,
M.
, and
Bertucco
,
A.
,
2007
, “
Synthetic Fuels by a Limited CO2 Emission Process Which Uses Both Fossil and Solar Energy
,”
Energy Fuels
,
21
,
pp.
3668
3675
.10.1021/ef7003255
9.
Wibberley
,
L.
,
Scaife
,
P.
, and
Winsen
,
J.
,
2008
, “
GHG and Cost Implications of Spinning Reserve for High-Penetration Renewables
,” CRC for Coal in Sustainable Development, Newcastle, Australia,
Technical Report
.
10.
Santacana
,
E.
,
Rackliffe
,
G.
,
Tang
,
L.
, and
Feng
,
X.
,
2010
, “
Getting Smart
,”
IEEE Power and Energy Magazine
,
8
(
March–April
),
pp.
41
48
.10.1109/MPE.2009.935557
11.
Kalogirou
,
S. A.
,
2009
,
Solar Energy Engineering: Processes and Systems
,
Elsevier
,
New York
.
12.
Harris
,
J. A.
, and
Lenz
,
T. G.
,
1985
, “
Thermal Performance of Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
,
34
,
pp.
135
142
.10.1016/0038-092X(85)90170-7
13.
Costea
,
M.
,
Petrescu
,
S.
, and
Harman
,
C.
,
1999
, “
The Effect of Irreversibilities on Solar Stirling Engine Cycle Performance
,”
Energy Convers. Manage.
,
40
,
pp.
1723
1731
.10.1016/S0196-8904(99)00065-5
14.
Baghernejad
,
A.
, and
Yaghoubi
,
M.
,
2010
, “
Exergy Analysis of an Integrated Solar Combined Cycle System
,”
Renewable Energy
,
35
,
pp.
2157
2164
.10.1016/j.renene.2010.02.021
15.
Jeter
,
S. M.
,
1981
, “
Maximum Conversion Efficiency for the Utilization of Direct Solar-Radiation
,”
Sol. Energy
,
26
(
3
),
pp.
231
236
.10.1016/0038-092X(81)90207-3
16.
Wall
,
G.
,
2009
, “
Exergetics,” Exergy, Ecology, Democracy, Bucaramang
, http://exergy.se/ftp/exergetics.pdf
17.
Spanner
,
D. C.
,
1967
,
Introduction to Thermodynamics (Experimental Botany)
,
2nd rev. printing ed.
,
Academic Press
,
London/New York
.
18.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
,
pp.
187
192
.10.1115/1.3687092
19.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
,
pp.
469
488
.10.1016/S0038-092X(03)00226-3
20.
Bejan
,
A.
,
1987
, “
Unification of 3 Different Theories Concerning the Ideal Conversion of Enclosed Radiation
,”
ASME J. Sol. Energy Eng.
,
109
(
1
),
pp.
46
51
.10.1115/1.3268177
21.
Bejan
,
A.
,
1988
,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
22.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
How Much Exergy Can One Obtain From Incident Solar Radiation?
,”
J. Appl. Phys.
,
105
,
044911
.10.1063/1.3081637
23.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design & Optimization
,
Wiley and Sons Inc.
,
New York
.
24.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
M.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2006
, “
Solar Gas Turbine Systems: Design, Cost, and Perspectives
,”
Sol. Energy
,
80
,
pp.
1231
1240
.10.1016/j.solener.2005.09.007
25.
Ghamarian
,
A.
, and
Cambel
,
A. B.
,
1982
, “
Exergy Analysis of Illinois No. 6 Coal
,”
Energy
,
7
,
pp.
483
488
.10.1016/0360-5442(82)90010-X
26.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
NIST Chemistry WebBook
,
NIST standard reference database number 69, accessed June 9, 2011
, http://webbook.nist.gov
27.
Rivero
,
R.
,
Rendon
,
C.
, and
Monroy
,
L.
,
1999
, “
The Exergy of Crude Oil Mixtures and Petroleum Fractions: Calculation and Application
,”
Int. J. Appl. Thermodyn.
,
2
,
pp.
115
123
, http://ehakem.com/index.php/IJoT/article/viewFile/19/17
28.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration Into Power Plants—A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
,
pp.
947
959
.10.1016/S0360-5442(03)00199-3
29.
Montes
,
M. J.
,
Abánades
,
A.
,
Martínez-Val
,
J. M.
, and
Valdés
,
M.
,
2009
, “
Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
,
pp.
2165
2176
.10.1016/j.solener.2009.08.010
30.
Pollard
,
W. G.
,
1976
, “
The Long-Range Prospects for Solar Energy: Solar Electricity Can Make Only a Limited Contribution to the Nation's Large-Scale Energy Needs
,”
Am. Sci.
,
64
,
pp.
424
429
, http://www.jstor.org/stable/27847346
31.
Ghobeity
,
A.
,
Noone
,
C. J.
,
Papanicolas
,
C. N.
, and
Mitsos
,
A.
,
2011
, “
Optimal Time-Invariant Operation of a Power and Water Cogeneration Solar-Thermal Plant
,”
Sol. Energy
,
85
,
pp.
2295
2320
.10.1016/j.solener.2011.06.023
32.
Noone
,
C. J.
,
Ghobeity
,
A.
,
Slocum
,
A.
,
Tzamtzis
,
G.
, and
Mitsos
,
A.
,
2011
, “
Site Selection for Hillside Central Receiver Solar Thermal Plants
,”
Sol. Energy
,
85
,
pp.
839
848
.10.1016/j.solener.2011.01.017
33.
Slocum
,
A. H.
,
Buongiorno
,
J.
,
Forsberg
,
C. W.
,
Codd
,
D. S.
, and
Paxson
,
A. T.
,
2009
, “
Concentrated Solar Power System
,” PCT patent application PCT/US10/49474.
34.
Slocum
,
A. H.
,
Codd
,
D. S.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
McKrell
,
T.
,
Nave
,
J. C.
,
Papanicolas
,
C. N.
,
Ghobeity
,
A.
,
Noone
,
C. J.
,
Passerini
,
S.
,
Rojas
,
F.
, and
Mitsos
,
A.
,
2011
, “
Concentrated Solar Power on Demand
,”
Sol. Energy
,
85
,
pp.
1519
1529
.10.1016/j.solener.2011.04.010
35.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
,
2012
, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Sol. Energy
,
86
,
pp.
792
803
.10.1016/j.solener.2011.12.007
36.
Horn
,
M.
,
Fuhring
,
H.
, and
Rheinlander
,
J.
,
2004
, “
Economic Analysis of Integrated Solar Combined Cycle Power Plants: A Sample Case: The Economic Feasibility of an ICCS Power Plant in Egypt
,”
Energy
,
29
,
pp.
935
945
.10.1016/S0360-5442(03)00198-1
37.
Ghobeity
,
A.
,
Lizarraga-Garcia
,
E.
, and
Mitsos
,
A.
,
2011
, “
Optimal Design and Operation of a Volumetric Solar-Thermal Energy Receiver and Storage
,”
ECOS 2011, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
,
July
4–7
.
38.
Ghobeity
,
A.
, and
Mitsos
,
A.
,
2011
, “
Optimal Operation of a Concentrated Solar Thermal Cogeneration Plant
,”
21st European Symposium on Computer Aided Chemical Engineering, E. N. Pistikopoulos
,
M. C.
Georgiadis
, and
A. C.
Kokossis
, eds.,
May 29–June 1
,
pp.
1974
1978
.
39.
Prior
,
B.
,
2011
, “
Cost and LCOE by Generation Technology, 2009–2020
,”
accessed Dec. 2011
, http://www.greentechmedia.com/images/wysiwyg/research-blogs/GTM-LCOE-Analysis.pdf
40.
Mancini
,
N. D.
, and
Mitsos
,
A.
,
2011
, “
Conceptual Design and Analysis of ITM Oxy-Combustion Power Cycles
,”
Phys. Chem. Chem. Phys.
,
13
,
pp.
21351
21361
.10.1039/c1cp23027a
41.
Pertsinidis
,
A.
,
Grossmann
,
I. E.
, and
McRae
,
G. J.
,
1998
, “
Parametric Optimization of MILP Programs and Framework for the Parametric Optimization of MINLPs
,”
Comput. Chem. Eng.
,
22
(
Suppl.
),
pp.
S205
S212
.10.1016/S0098-1354(98)00056-8
42.
Li
,
D.
,
Yang
,
J. B.
, and
Biswal
,
M. P.
,
1999
, “
Quantitative Parametric Connections Between Methods for Generating Noninferior Solutions in Multiobjective Optimization
,”
Eur. J. Oper. Res.
,
117
,
pp.
84
99
.10.1016/S0377-2217(98)00018-6
43.
Li
,
H.
,
Maréchal
,
F.
, and
Favrat
,
D.
,
2007
, “
Evaluation of Natural Gas Combined Cycle Plants in China Through Environomic Modeling and Multi-Objective Optimization
,”
PRES Conference
.
44.
Spelling
,
J.
,
Russ
,
M.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2011
, “
A Thermoeconomic Study of Hybrid Solar Gas-Turbine Power Plants
,”
International SolarPACES Conference
,
Granada
.
45.
Gedle
,
Y.
,
Meyer
,
L.
,
Hoyer
,
M.
, and
Schmitz
,
M.
,
2011
, “
Exergoeconomic Analysis of Solar Thermal Power Plants
,”
SolarPACES Conference
,
Granada
.
46.
Cavallaro
,
F.
,
2009
, “
Multi-Criteria Decision Aid to Assess Concentrated Solar Thermal Technologies
,”
Renewable Energy
,
24
,
pp.
1678
1685
.10.1016/j.renene.2008.12.034
47.
Mills
,
D.
,
2004
, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
,
76
,
pp.
19
31
.10.1016/S0038-092X(03)00102-6
48.
Birnbaum
,
J.
,
Eck
,
M.
,
Fichtner
,
M.
,
Hirsch
,
T.
,
Lehmann
,
D.
, and
Zimmermann
,
G.
,
2010
, “
A Direct Steam Generation Solar Power Plant With Integrated Thermal Storage
,”
ASME J. Sol. Energy Eng.
,
132
,
pp.
310
314
.10.1115/1.4001563
49.
Zarza
,
E.
,
Rojas
,
M. E.
,
González
,
L.
,
Caballero
,
J.
, and
Rueda
,
F.
,
2006
, “
INDITEP: The First Pre-Commercial DSG Solar Power Plant
,”
Sol. Energy
,
80
,
pp.
1270
1276
.10.1016/j.solener.2005.04.019
50.
Hale
,
M. J.
,
2000
, “
Survey of Thermal Storage for Parabolic Trough Power Plants
,”
NREL, Technical Report
.
51.
Herrmann
,
H.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
145
152
.10.1115/1.1467601
52.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
153
159
.10.1115/1.1464123
53.
Laing
,
D.
,
Steinmann
,
W. D.
,
Fib
,
M.
,
Tamme
,
R.
,
Brand
,
T.
, and
Bahl
,
C.
,
2008
, “
Solid Media Thermal Storage Development and Analysis of Modular Storage Operation Concepts for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
130
,
011005
.10.1115/1.2804625
54.
Mirisson
,
V.
,
Rady
,
M.
,
Palomo
,
E.
, and
Arquis
,
E.
,
2008
, “
Thermal Energy Storage Systems for Electricity Production Using Solar Energy Direct Steam Generation Technology
,”
Chem. Eng. Process. Process Intensification
,
47
,
pp.
499
507
.10.1016/j.cep.2007.01.025
55.
DeMeo
,
E. A.
, and
Galdo
,
J. F.
,
1997
, “
Renewable Energy Technology Characterizations
,”
Electric Power Research Institute (EPRI) and U.S. Department of Energy, Technical Report
.
56.
Price
,
H.
,
Lüpfert
,
E.
, and
Kearney
,
D.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
109
125
.10.1115/1.1467922
57.
Odeh
,
S. D.
,
Behnia
,
M.
, and
Morrison
,
G. L.
,
2003
, “
Performance Evaluation of Solar Thermal Electric Generation Systems
,”
Energy Convers. Manage.
,
44
,
pp.
2425
2443
.10.1016/S0196-8904(03)00011-6
58.
Mills
,
D. R.
, and
Morrison
,
G. L.
,
2000
, “
Compact Linear Fresnel Reflector Solar Thermal Power Plants
,”
Sol. Energy
,
68
,
pp.
263
283
.10.1016/S0038-092X(99)00068-7
59.
Lewandowski
,
A.
, and
Simms
,
D.
,
1987
, “
An Assessment of Linear Fresnel Lens Concentrators for Thermal Applications
,”
Energy
,
12
,
pp.
333
338
.10.1016/0360-5442(87)90092-2
60.
Novatec Solars Fresnel Collector Generates Superheated Steam Above 500c
,”
accessed April 6, 2012
, http://www.novatecsolar.com/86-1-Novatec-Solars-Fresnel-collector-generates-superheated-steam-above-500C.html
61.
Sandia National Laboratory
, “
Parabolic Trough at Kramer Junction
,”
accessed June 22, 2011
, http://www.energylan.sandia.gov
62.
Charles
,
R. P.
,
Davis
,
K. W.
, and
Smith
,
J. L.
,
2005
, “
Assessment of Concentrating Solar Power Technology Cost and Performance Forecasts
,”
Sargent & Lundy LLC, Technical Report
.
63.
Mills
,
D. R.
,
Morrison
,
G. L.
, and
Liévre
,
P. L.
,
2002
, “
Project Proposal for a Compact Linear Fresnel Reflector Solar Thermal Plant in the Hunter Valley
,”
ANZSES Annual Conference—Solar Harvest
,
Newcastle, Australia
,
Technical Report
.
64.
Silva
,
M.
,
Blanco
,
M.
, and
Ruiz
,
V.
,
1999
, “
Integration of Solar Thermal Energy in a Conventional Power Plant: The Colón Solar Project
,”
J. Phys.
,
9
,
pp.
189
194
.10.1051/jp4:1999328
65.
Elsaket
,
G. M.
,
2007
, “
Simulating the Integrated Solar Combined Cycle for Power Plants Application in Libya
,”
Master's thesis
,
Cranfield University
,
Cranfield, UK
.
66.
Yang
,
Y.
,
Cui
,
Y.
,
Hou
,
H.
,
Guo
,
X.
,
Yang
,
Z.
, and
Wang
,
N.
,
2008
, “
Research on Solar Aided Coal-Fired Power Generation System and Performance Analysis
,”
Sci. China, Ser. E: Technol. Sci.
,
51
,
pp.
1211
1221
.10.1007/s11431-008-0172-z
67.
Kane
,
M.
,
Favrat
,
D.
,
Ziegler
,
K.
, and
Allani
,
Y.
,
2000
, “
Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants
,”
Int. J. Thermodyn.
,
3
,
pp.
191
198
.10.1016/S0360-5442(03)00127-0
68.
Ausra Media Department
, “
Fresnel Reflectors
,”
accessed June 18, 2011
, http://upload.wikimedia.org/wikipedia/en/7/7f/Fresnel_reflectors_ausra.jpg
69.
Solar Two Tower in Daggett
,
CA, accessed Dec. 2011
, http://en.wikipedia.org/wiki/File:Solar _ Two _ 2003.jpg
70.
Buck
,
R.
,
Abele
,
M.
,
Kunberger
,
J.
,
Denk
,
T.
,
Heller
,
P.
, and
Lupfert
,
E.
,
1999
, “
Receiver for Solar-Hybrid Gas Turbine and Combined Cycle Systems
,”
J. Phys.
,
9
,
pp.
537
544
.10.1051/jp4:1999385
71.
Buck
,
R.
,
Brauning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
,
2002
, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
2
9
.10.1115/1.1445444
72.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Sol. Energy Eng.
,
124
,
pp.
98
108
.10.1115/1.1467921
73.
Fisher
,
U.
,
Sugarmen
,
C.
,
Ring
,
A.
, and
Sinai
,
J.
,
2004
, “
Gas Turbine Solarization—Modifications for Solar/Fuel Hybrid Operation
,”
ASME J. Sol. Energy Eng.
,
126
,
pp.
872
878
.10.1115/1.1763602
74.
Price
,
H.
,
Whitney
,
D.
, and
Beebe
,
B.
,
1996
, “
SMUD Kokhala Power Tower Study
,” Proceedings of the International Solar Energy Conference, San Antonio, TX, March 31–April 3,
118
,
pp.
273
276
, http://www.osti.gov/bridge/servlets/purl/629317-m84iCB/webviewable/629317.pdf
75.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
,
1998
, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
,
pp.
121
129
.10.1016/S0038-092X(97)00107-2
76.
Sandia National Laboratory
, “
Solar Dish in Spain
,”
accessed June 22, 2011
, http://www.energylan.sandia.gov
77.
Sandia Stirling Energy Systems Set New World Record for Solar-To-Grid Conversion Efficiency
,” https://share.sandia.gov,
accessed May 23, 2011
.
78.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Soldiani
,
I.
, and
Kreetz
,
H.
,
2004
, “
Developing Ammonia Based Thermochemical Energy Storage for Dish Power Plants
,”
Sol. Energy
,
76
,
pp.
331
337
.10.1016/j.solener.2003.07.020
79.
Reilly
,
H. E.
, and
Kolb
,
G. J.
,
2001
, “
An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project
,”
Sandia National Labs
,
Technical Report
.
80.
Ávila Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
,
pp.
891
910
.10.1016/j.solener.2011.02.002
81.
Oda
,
S.
, and
Hashem
,
H.
,
1988
, “
A Case Study for Three Combined Cycles of a Solar-Conventional Power Generation Unit
,”
Sol. Wind Technol.
,
5
,
pp.
263
270
.10.1016/0741-983X(88)90023-9
82.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
,
2006
, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
,
pp.
1225
1230
.10.1016/j.solener.2005.04.020
83.
Sugarmen
,
C.
,
Tellez
,
F.
,
Buck
,
R.
,
Medina
,
J. E.
,
Altwegg
,
P.
,
Ring
,
A.
,
Romero
,
M.
,
Heller
,
P.
, and
Schwarzbözl
,
P.
,
2002
, “
SOLGATE: Solar Hybrid Gas Turbine Electric Power System
,”
European Commission
,
Technical Report 21615
.
84.
Chen
,
L.
,
Li
,
Y.
,
Sun
,
F.
, and
Wu
,
C.
,
2004
, “
Power Optimization of Open-Cycle Regenerator Gas-Turbine
,”
Appl. Energy
,
78
,
pp.
199
218
.10.1016/j.apenergy.2003.08.005
85.
Chen
,
C. Y.
, and
Chen
,
C. K.
,
1996
, “
Power Optimization of an Endoreversible Regenerative Brayton Cycle
,”
Energy
,
21
,
pp.
241
247
.10.1016/0360-5442(95)00126-3
86.
Göktun
,
S.
, and
Yavuz
,
H.
,
1999
, “
Thermal Efficiency of a Regenerative Brayton Cycle With Isothermal Heat Addition
,”
Energy Convers. Manage.
,
40
,
pp.
1259
1266
.10.1016/S0196-8904(99)00014-X
87.
Wu
,
C.
, and
Kiang
,
R. L.
,
1991
, “
Power Performance of a Nonisentropic Brayton Cycle
,”
J. Eng. Gas Turbines Power
,
113
,
pp.
501
504
.10.1115/1.2906268
88.
Becker
,
M.
, and
Böhmer
,
M.
,
1989
, “
GAST—The Gas-Cooled Solar Tower Technology Program
,”
Proceedings of the Final Presentation
,
Lahnstein, Federal Republic of Germany
.
89.
Livshits
,
M.
, and
Kribus
,
A.
,
2012
, “
Solar Hybrid Steam Injection Gas Turbine (STIG) Cycle
,”
Sol. Energy
,
86
,
pp.
190
199
.10.1016/j.solener.2011.09.020
90.
Ugolini
,
D.
,
Zachary
,
J.
, and
Park
,
J.
,
2009
, “
Options for Hybrid Solar and Conventional Fossil Plants
,”
Bechtel Corporation
,
Technical Report
.
91.
Hong
,
H.
,
Jin
,
H.
, and
Liu
,
B.
,
2006
, “
A Novel Solar-Hybrid Gas Turbine Combined Cycle With Inherent CO2 Separation Using Chemical-Looping Combustion by Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
128
,
pp.
275
284
.10.1115/1.2212443
92.
Kosugi
,
T.
, and
Pak
,
P.
,
2003
, “
Economic Evaluation of Solar Thermal Hybrid H2O Turbine Power Generation Systems
,”
Energy
,
28
,
pp.
185
198
.10.1016/S0360-5442(02)00092-0
93.
Pak
,
P.
,
Hatikawa
,
T.
, and
Suzuki
,
Y.
,
1995
, “
A Hybrid Power Generation System Utilizing Solar Thermal Energy With CO2 Recovery Based on Oxygen Combustion Method
,”
Energy Convers. Manage.
,
36
,
pp.
823
826
.10.1016/0196-8904(95)00130-6
94.
Lam
,
E. Y.
,
1979
, “
A Solar-Fossil Hybrid Power System Using a Combined Cycle
,”
Proceedings of the International Solar Energy Society
,
Vol.
2
,
pp.
1151
1155
.
95.
Chase
,
D. L.
,
2000
, “
Combined-Cycle Development, Evolution, and Future
,”
GE Power Systems
,
Technical Report
.
96.
Kistler
,
B. L.
,
1986
, “
A User's Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants
,”
Sandia National Laboratories
,
Technical Report
.
97.
Stoddard
,
M. C.
,
Faas
,
S. E.
,
Chiang
,
C. J.
, and
Dirks
,
J. A.
,
1987
, “
SOLERGY–A Computer Code for Calculating the Annual Energy From Central Receiver Power Plants
,”
Sandia National Laboratories
,
Technical Report
.
98.
Segal
,
A.
,
1996
, “
WISDOM
,”
Proceedings of the American Solar Energy Society Annual Conference
,
American Solar Energy Society
.
99.
Segal
,
A.
, and
Epstein
,
M.
,
2003
, “
Optimized Working Temperatures of a Solar Central Receiver
,”
Sol. Energy
,
75
,
pp.
503
510
.10.1016/j.solener.2003.08.036
100.
Kakaras
,
E.
,
Doukelis
,
A.
,
Leithner
,
R.
, and
Aronis
,
N.
,
2004
, “
Combined Cycle Power Plant With Integrated Low Temperature Heat (LOTHECO)
,”
Appl. Therm. Eng.
,
24
,
pp.
1677
1686
.10.1016/j.applthermaleng.2003.10.030
101.
Alrobaei
,
H.
,
2008
, “
Novel Integrated Gas Turbine Solar Cogeneration Power Plant
,”
Desalination
,
220
,
pp.
574
587
.10.1016/j.desal.2007.01.058
102.
Solar Millenium
, “
Solar Power for Egypt: Flagsol Supplied the Country's First Solar Field
,”
accessed Nov. 22, 2011
, http://www.solarmillennium.de/english/technology/references_and_projects/hybrid-power-plant-egypt/kuraymat.html
103.
The Callifornia Energy Commission
, “
Victorville 2 Hybrid Power Project
,”
accessed Nov. 18, 2011
, http://www.energy.ca.gov/sitingcases/victorville2/index.html
104.
The California Energy Commission
, “
City of Palmdale Hybrid Power Plant Project
,”
accessed Nov. 18, 2011
, http://www.energy.ca.gov/sitingcases/palmdale/index.html
105.
National Renewable Energy Laboratory
, “
Concentrating Solar Power Projects—ISCC Argelia
,”
accessed Nov. 22, 2011
, http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=44
106.
Iran—Yazd Integrated Solar Combined Cycle Power Station
,
accessed Nov. 22, 2011
, http://www.helioscsp.com/noticia.php?id_not=393
107.
Florida Power and Light
, “
Martin Next Generation Solar Energy Center
,”
accessed Nov. 18, 2011
, http://www.fpl.com/environment/solar/martin.shtml
108.
Bazex
,
K.
,
2011
, “
Mexico—Hybrid Solar Thermal Power Plant: P066426—Implementation Status Results Report
,”
The World Bank
,
Technical Report
.
109.
Abengoa
, “
Abengoa Launches First Hybrid Solar-Gas Plant in Algeria
,”
accessed Nov. 18, 2011
, http://abengoa.es/corp/web/en/noticias_y_publicaciones/noticias/historico/2011/07_julio/abg_20110714.html
110.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
,
Vol.
15
,
R. A. Meyers, ed.
,
Academic Press
,
Waltham, MA
,
pp.
237
256
.
111.
Hirsch
,
D.
,
Epstein
,
M.
, and
Steinfeld
,
A.
,
2001
, “
The Solar Thermal Decarbonization of Natural Gas
,”
Int. J. Hydrogen Energy
,
26
,
pp.
1023
1033
.10.1016/S0360-3199(01)00040-4
112.
Hirsch
,
D.
, and
Steinfeld
,
A.
,
2004
, “
Solar Hydrogen Production by Thermal Decomposition of Natural Gas Using Vortex-Flow Reactor
,”
Int. J. Hydrogen Energy
,
29
,
pp.
47
55
.10.1016/S0360-3199(03)00048-X
113.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
,
2009
, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
,
34
,
pp.
710
720
.10.1016/j.ijhydene.2008.11.019
114.
Pregger
,
T.
,
Graf
,
D.
,
Krewitt
,
W.
,
Sattler
,
C.
,
Roeb
,
M.
, and
Moller
,
S.
,
2009
, “
Prospects of Solar Thermal Hydrogen Production Processes
,”
Int. J. Hydrogen Energy
,
34
,
pp.
4256
4267
.10.1016/j.ijhydene.2009.03.025
115.
Segal
,
A.
, and
Epstein
,
M.
,
2003
, “
Solar Ground Reformer
,”
Sol. Energy
,
75
,
pp.
479
490
.10.1016/j.solener.2003.09.005
116.
Spath
,
P.
, and
Amos
,
W.
,
2002
, “
Assessment of Natural Gas Splitting With a Concentrating Solar Reactor for Hydrogen Production
,”
NREL, Technical Report
.
117.
Stein
,
W.
,
Benito
,
R.
, and
Chensee
,
M.
,
2007
, “
Transport and Use of Solar Energy in Hydrogen
,”
Adv. Appl. Ceram.
,
106
,
pp.
2
5
.10.1179/174367607X152371
118.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy
,
23
,
pp.
803
814
.10.1016/S0360-5442(98)00026-7
119.
Zedtwitz
,
P.
,
Petrasch
,
J.
,
Trommer
,
D.
, and
Steinfeld
,
A.
,
2006
, “
Hydrogen Production via the Solar Thermal Decarbonization of Fossil Fuels
,”
Sol. Energy
,
80
,
pp.
1333
1337
.10.1016/j.solener.2005.06.007
120.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
,
2001
, “
Solar Upgrading of Fuels for Generation of Electricity
,”
ASME J. Sol. Energy Eng.
,
123
,
pp.
160
163
.10.1115/1.1353177
121.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
,
pp.
567
597
.10.1016/S0360-1285(03)00059-5
122.
Zedtwitz
,
P.
, and
Steinfeld
,
A.
,
2003
, “
The Solar Thermal Gasification of Coal—Energy Conversion Efficiency and CO2 Mitigation Potential
,”
Energy
,
28
,
pp.
441
456
.10.1016/S0360-5442(02)00139-1
123.
Piatkowski
,
N.
,
Wieckert
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
,
2011
, “
Solar-Driven Gasification of Carbonaceous Feedstock—A Review
,”
Energy Environ. Sci.
,
4
(
1
),
pp.
73
82
.10.1039/c0ee00312c
124.
Hong
,
H.
,
Jin
,
H.
,
Ji
,
J.
,
Wang
,
Z.
, and
Cai
,
R.
,
2005
, “
Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy
,”
Sol. Energy
,
78
,
pp.
49
58
.10.1016/j.solener.2004.06.019
125.
Zhang
,
N.
, and
Lior
,
N.
,
2009
, “
Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, With Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System
,”
ASME Conference Proceedings
,
Vol.
6
,
pp.
313
326
.
126.
Abdallah
,
H.
, and
Harvey
,
S.
,
2001
, “
Thermodynamic Analysis of Chemically Recuperated Gas Turbines
,”
Int. J. Therm. Sci.
,
40
,
pp.
372
384
.10.1016/S1290-0729(01)01225-X
127.
Bolland
,
O.
, and
Undrum
,
H.
,
2003
, “
A Novel Methodology for Comparing Co2 Capture Options for Natural Gas-Fired Combined Cycle Plants
,”
Adv. Environ. Res.
,
7
,
pp.
901
911
.10.1016/S1093-0191(02)00085-0
You do not currently have access to this content.