This paper presents an experimental study of the energy charge and discharge processes in a packed bed thermocline thermal storage tank for application in concentrated solar power plants. A mathematical analysis was provided for better understanding and planning of the experimental tests. The mathematical analysis indicated that the energy storage effectiveness is related to fluid and solid material properties, tank dimensions, packing schemes of the solid filler material, and the durations of the charge and discharge times. Dimensional analysis of the governing equations was applied to consolidate many parameters into a few dimensionless parameters, allowing scaling from a laboratory system to an actual industrial application. Experiences on the system design, packing of solid filler material, system operation, and data analysis in a laboratory-scale system have been obtained in this work. These data are used to validate a recently published numerical solution method. The study will benefit the application of thermocline thermal storage systems in the large scale concentrated solar thermal power plants in industry.

References

References
1.
Pitz-Paal
,
R.
,
Dersch
,
J.
,
Milow
,
B.
,
Tellez
,
F.
,
Ferriere
,
A.
,
Langnickel
,
U.
,
Steinfeld
,
A.
,
Karni
,
J.
,
Zarza
,
E.
, and
Popel
,
O.
,
2007
, “
Development Steps for Parabolic Trough Solar Power Technologies With Maximum Impact on Cost Reduction
,”
ASME J. Sol. Energy Eng.
,
129
(
4
),
pp.
371
377
.10.1115/1.2769697
2.
Price
,
H.
,
Lupfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
),
pp.
109
125
.10.1115/1.1467922
3.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
,
pp.
1695
1721
.10.1016/j.rser.2010.03.012
4.
Canada
,
S.
,
Brosseau
,
D. A
, and
Price
,
H.
,
2006
, “
Design and Construction of the APS 1 MWe Parabolic Trough Power Plant
,”
ASME Conference Proceedings
,
pp.
91
98
.
5.
Kolb
,
G.
, and
Hassani
,
V.
,
2006
, “
Performance Analysis of Thermocline Energy Storage Proposed for the 1 MW Saguaro Solar Trough Plant
,”
ASME ISEC Proceedings
,
Denver, CO
.
6.
Relloso
,
S.
, and
Gutiérrez
,
Y.
,
2008
, “
Real Application of Molten Salt Thermal Storage to Obtain High Capacity Factors in Parabolic Trough Plants
,”
Proceedings of 14th International SolarPACES Symposium on Solar Thermal Concentrating Technologies
,
Las Vegas
.
7.
Montes
,
M. J.
,
Abánades
,
A.
,
Martínez-Val
,
J. M.
, and
Valdés
,
M.
,
2009
, “
Solar Multiple Optimization for a Solar-Only Thermal Power Plant, Using Oil as Heat Transfer Fluid in the Parabolic Trough Collectors
,”
Sol. Energy
,
83
(
12
),
pp.
2165
2176
.10.1016/j.solener.2009.08.010
8.
Rovira
,
A.
,
Montes
,
J. M.
,
Valdes
,
M.
, and
Martinez-Val
,
J. M.
,
2011
, “
Energy Management in Solar Thermal Power Plants With Double Thermal Storage System and Subdivided Solar Field
,”
Appl. Energy
,
88
,
pp.
4055
4066
.10.1016/j.apenergy.2011.04.036
9.
McMahan
,
A.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2007
, “
A Finite-Time Thermodynamic Framework for Optimizing Solar-Thermal Power Plants
,”
ASME J. Sol. Energy Eng.
,
129
(
4
),
pp.
355
362
.10.1115/1.2769689
10.
Renewables
,
2007
,
Global Status Report,” 2007, REN21-Renewable Energy Policy Network for the 21st Century
, http://www.ren21.net/Portals/97/documents/GSR/RE2007_Global_Status_Report.pdf.
11.
Quaschning
,
V.
,
2004
, “
Technical and Economical Comparison of Photovoltaic and Concentrating Solar Thermal Power Systems Depending on Annual Global Irradiation
,”
Sol. Energy
,
77
,
pp.
171
178
.10.1016/j.solener.2004.04.011
12.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1—Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
),
pp.
31
55
.10.1016/j.rser.2009.07.035
13.
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
),
pp.
145
152
.10.1115/1.1467601
14.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
(
5–6
),
pp.
883
893
.10.1016/S0360-5442(03)00193-2
15.
Brosseau
,
D.
,
Kelton
,
J. W.
,
Ray
,
D.
,
Edgar
,
M.
,
Chisman
,
K.
, and
Emms
,
B.
,
2005
, “
Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems, in Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
127
(
1
),
pp.
109
116
.10.1115/1.1824107
16.
Schumann
,
T. E. W.
,
1929
, “
Heat Transfer: A Liquid Flowing Through a Porous Prism
,”
J. Franklin Inst.
,
208
(
3
),
pp.
405
416
.10.1016/S0016-0032(29)91186-8
17.
Krane
,
R. J.
, and
Krane
,
M. J. M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part II: Completion of the Analytical Model, Presentation and Interpretation of the Results
,”
J. Energy Resour. Technol.
,
114
(
3
),
pp.
204
208
.10.1115/1.2905942
18.
Bradshaw
,
A. V.
,
Johnson
,
A.
,
McLachlan
,
N. H.
, and
Chiu
,
Y.-T.
,
1970
, “
Heat Transfer Between Air and Nitrogen and Packed Beds of Non-Reacting Solids
,”
Trans. Inst. Chem. Eng.
,
48
,
pp.
T77
T84
.
19.
Jeffreson
,
C. P.
,
1972
, “
Prediction of Breakthrough Curves in Packed Beds: 1. Applicability of Single Parameter Models
,”
Trans. Am. Inst. Chem. Eng.
,
18
(
2
),
pp.
409
416
.10.1002/aic.690180225
20.
Shitzer
,
A.
, and
Levy
,
M.
,
1983
. “
Transient Behavior of a Rock-Bed Thermal Storage System Subjected to Variable Inlet Air Temperatures: Analysis and Experimentation
,”
ASME J. Sol. Energy Eng.
,
105
(
2
),
pp.
200
206
.10.1115/1.3266366
21.
McMahan
,
A. C.
,
2006
, “
Design and Optimization of Organic Rankine Cycle Solar-Thermal Power Plants
,”
M.S. thesis
,
University of Wisconsin-Madison
,
Madison, WI
.
22.
Mawire
,
A.
, and
McPherson
,
M.
,
2008
, “
Experimental and Simulated Temperature Distribution of an Oil-Pebble Bed Thermal Energy Storage System With a Variable Heat Source
,”
Appl. Therm. Eng.
,
29
,
pp.
1086
1095
.10.1016/j.applthermaleng.2008.05.028
23.
Pacheco
,
J.
,
Showalter
,
S.
, and
Kolb
,
W.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
J. Sol. Energy Eng.
,
124
(
124
),
pp.
153
159
.10.1115/1.1464123
24.
Hanchen
,
M.
,
Bruckner
,
S.
, and
Stenfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
,
pp.
1798
1806
.10.1016/j.applthermaleng.2010.10.034
25.
Yang
,
Z.
, and
Garimella
,
S.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
,
pp.
974
985
.10.1016/j.solener.2010.03.007
26.
Flueckiger
,
S.
,
Yang
,
Z.
, and
Garimella
,
S.
,
2011
, “
An Integrated Thermal and Mechanical Investigation of Molten-Salt Thermocline Energy Storage
,”
Appl. Energy
,
88
,
pp.
2098
2105
.10.1016/j.apenergy.2010.12.031
27.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
,
pp.
65
75
.10.1016/j.apenergy.2011.11.002
28.
Van Lew
,
J.
,
Li
,
P.
,
Chan
,
C. L.
,
Karaki
,
W.
, and
Stephens
,
J.
,
2011
, “
Analysis of Heat Storage and Delivery of a Thermocline Tank Having Solid Filler Material
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021003
.10.1115/1.4003685
29.
Meier
,
A.
,
Winkler
,
C.
, and
Wuillemin
,
D.
,
1991
, “
Experiment for Modeling High Temperature Rock Bed Storage
,”
Sol. Energy Mater. Sol. Cells
,
24
,
pp.
255
264
.10.1016/0165-1633(91)90066-T
30.
Beasley
,
D. E.
, and
Clark
,
J. A.
,
1984
, “
Transient Response of a Packed Bed for Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
27
(
9
),
pp.
1659
1669
.10.1016/0017-9310(84)90278-3
31.
Li
,
P.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C. L.
,
Stephens
,
J.
, and
Wang
,
Q.
,
2011
, “
Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration
,”
Sol. Energy
,
85
(
9
),
pp.
2130
2143
.10.1016/j.solener.2011.05.022
You do not currently have access to this content.