Optimization of design and operation is presented for a solar energy receiver combined with a thermal energy storage. The concentrated solar power on-demand (CSPonD) concept, which can be described, in brief, as a volumetric solar energy receiver system combined with a modified raft thermocline concept, is considered. The CSPonD concept is assumed to be providing heat for a general cogeneration scheme where power production is the main product of the cogeneration. With a constant power production, a secondary process is assumed to consume the process heat from the CSPonD and power cycle. Models are developed for thermal analysis of the energy storage, taking into account hourly and seasonal variations in the solar energy as well as the heliostat field efficiency. Nonlinear programming (NLP) is used for optimization of the design and operation. The sequential method of optimization and a heuristic approach (parallel computing) are implemented using an equation-oriented modeling environment and gradient-based local solvers. A strategy is presented to design and operate the plant, considering the significant seasonal variations in the solar energy. Three case studies are presented. The first one optimizes the design based on a design day and a desired thermal duty. The other two address optimal yearly operation of the plant. The results of the optimization case studies show that (a) the CSPonD concept aids in handling variations (hourly, daily, and seasonal) in solar energy, (b) CSPonD is a promising concept for cogeneration, (c) the mass of salt required in the CSPonD concept is not significantly lower than the salt required in a single-tank thermal energy storage system.

References

References
1.
Ter-Gazarian
,
A.
, 1994,
Energy Storage for Power Systems
,
Institution of Engineering and Technology
,
Peter Peregrinus Ltd., London, UK.
2.
Roeb
,
M.
, and
Müller-Steinhagen
,
H.
, 2010, “
Concentrating on Solar Electricity and Fuels
,”
Science
,
329
(5993), pp.
773
774
.
3.
A
Greener
, “
Expand Peak Load Management
,”
Greater New York PLANYC
, Chap. 6, p.
108
. http://nyc.gov/html/planyc2030/downloads/pdf/full_report.pdfhttp://nyc.gov/html/planyc2030/downloads/pdf/full_report.pdf, accessed September 2010.
5.
Hasnain
,
S. M.
, 1998, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.
6.
Wang
,
K. Y.
,
West
,
R. E.
,
Kreith
,
F.
, and
Lynn
,
P.
, 1985, “
High-Temperature Sensible-Heat Storage Options
,”
Energy
,
10
(
10
), pp.
1165
1175
.
7.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
8.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
, 2010, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1-Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.
9.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L. F.
, 2010, “
State of the Art on High-Temperature Thermal Energy Storage for Power Generation. Part 2-Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
56
72
.
10.
Andujar
,
J. M.
,
Rosa
,
F.
, and
Geyer
,
M.
, 1991, “
CESA-1 Thermal Storage System Evaluation
,”
Sol. Energy
,
46
(
5
), pp.
305
312
.
11.
Ortega
,
J. I.
,
Burgaleta
,
J. I.
, and
Téllez
,
E. M.
, 2008, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
(
2
),
024501
.
12.
Copeland
,
R. J.
, and
Green
,
J.
, 1983, “
Raft Thermocline Thermal Storage
,”
Proceedings of the Intersociety Energy Conversion Engineering Conference
, pp.
1801
1805
.
13.
Pacheco
,
J.
,
Showalter
,
S.
, and
Kolb
,
W.
, 2002, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
14.
Nexant and LLC, 2000, “
Thermal Storage for Rankine Cycle Power Plants
,” Technical Report No. KAF-9–29765-09, NREL.
15.
Herrmann
,
U.
, and
Kearney
,
D.
, 2002, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
145
152
.
16.
Slocum
,
A.
,
Buongiorno
,
J.
,
Forsberg
,
C.
,
McKrell
,
T.
,
Mitsos
,
A.
,
Nave
,
J.-C.
,
Codd
,
D.
,
Ghobeity
,
A.
,
Noone
,
C.
,
Passerini
,
S.
,
Rojas
,
F.
, and
Rees
,
J.
, 2011, “
Concentrated Solar Power on Demand
,”
Sol. Energy
,
85
, pp.
1519
1529
.
17.
Ghobeity
,
A.
,
Noone
,
C. J.
,
Papanicolas
,
C. N.
, and
Mitsos
,
A.
, 2011, “
Optimal Time-Invariant Operation of a Power and Water Cogeneration Solar-Thermal Plant
,”
Sol. Energy
,
85
(
9
), pp.
2295
2320
.
18.
Wittmann
,
M.
,
Eck
,
M.
,
Pitz-Paal
,
R.
, and
Müller-Steinhagen
,
H.
, 2011, “
Methodology for Optimized Operation Strategies of Solar Thermal Power Plants With Integrated Heat Storage
,”
Sol. Energy
,
85
(
4
), pp.
653
659
.
19.
Noone
,
C. J.
,
Torrilhon
,
M.
, and
Mitsos
,
A.
, 2012, “
Heliostat Field Optimization: A New Computationally Efficient Model and Biomimetic Layout
,”
Sol. Energy
,
86
(
2
),
792
803
.
20.
Passerini
,
S.
, 2010, “
Optical and Chemical Properties of Molten Salt Mixtures for Use in High Temperature Power Systems
,” SM thesis, Nuclear Science and Engineering, MIT, Cambridge, MA.
21.
National Renewable Energy Laboratory, 2009, “
Solar Advisor Model Reference Manual for CSP Trough Systems
,” https://www.nrel.gov/analysis/sam/pdfs/sam_csp_reference_manual_3.0.pdf, accessed August 2011.
22.
Williams
,
D. F.
,
Toth
,
L. M.
, and
Clarno
,
K. T.
, 2006, “
Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR)
,” Technical Report No. ORNL/TM-2006/12.
23.
Mehrkam
,
Q. D.
, 1967, “
An Introduction to Salt Bath Heat Treatment
,”
Tooling and Production Magazine
, June.
24.
Bird
,
R. E.
, and
Hulstrom
,
R. L.
, 1981, “
Review, Evaluation, and Improvement of Direct Irradiance Models
,”
ASME J. Sol. Energy Eng.
,
103
(
3
), pp.
182
192
.
25.
Badescu
,
V.
, ed., 2008,
Modeling Solar Radiation at the Earth’s Surface: Recent Advances
,
Springer-Verlag
,
Berlin, Germany
.
26.
Yao
,
Z.
,
Wang
,
Z.
,
Lu
,
Z.
, and
Wei
,
X.
, 2009, “
Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China
,”
Renewable Energy
,
34
(
11
), pp.
2437
2446
.
27.
JACOBIAN, 2009, “
Numerica Technology, JACOBIAN Modeling and Optimization Software
,” http://www.numericatech.com
28.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 2005, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
29.
Wächter
,
A.
, and
Biegler
,
L. T.
, 2006, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
30.
Nissen
,
D. A.
, and
Meeker
,
D. E.
, 1983, “
Nitrate Nitrite Chemistry in Nano3-kno3 Melts
,”
Inorg. Chem.
,
22
(
5
), pp.
716
721
.
31.
Bradshaw
,
R. W.
, and
Meeker
,
D. E.
, 1990, “
High-Temperature Stability of Ternary Nitrate Molten-Salts for Solar Thermal-Energy Systems
,”
Sol. Energy Mater.
,
21
(
1
), pp.
51
60
.
32.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J. A.
, 2011, “
Power Tower Technology Roadmap and Cost Reduction Plan
,”
Sandia National Lab
,
Albuquerque
,
New Mexico
, Technical Report No. SAND2011–2419.
33.
Sargent and Lundy LLC Consulting Group, 2003, “
Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts
,” Sandia National Lab, Golden, Colorado, Technical Report No. NREL/SR-550–34440.
You do not currently have access to this content.