A numerical analysis of the effects of sloped terrain on the reading of a nacelle anemometer is investigated. Simulations of the turbulent flow around a 2.5 MW wind turbine in an atmospheric boundary layer are made by resolving 3D RANS equations. In addition to flat terrain, four escarpments (at slopes of 7.5%, 11%, 14%, and 20%) are studied for various inlet velocities in three cases: terrains with no wind turbine, with nonoperating turbines and with operating turbines. The slope of the ground has two major effects on flow: speed-up and an increase in flow inclination. The presence of the nacelle enhances the flow speed-up caused by the escarpment, especially outside the anemometer’s position. However, the horizontal velocity at the location of the anemometer tends to decrease with increasing ground slope. This trend is due in large part to the nacelle wake. This disturbed area is characterized by the presence of separated flow and two opposing vortices which are sensitive to the flow inclination. The evaluated nacelle transfer function is influenced by the terrain slope but this sensitivity is reduced by displacing the position of the anemometer upward the nacelle body.

References

References
1.
IEC-CD-61400-12-2, 2008, “
Wind Turbines Part 12-2: Power Performance of Electricity Producing Wind Turbines Based on Nacelle Anemometry
,” Technical Report No. 88/325/CD.
2.
Dahlberg
,
J.-A.
,
Frandsen
,
S.
,
Pedersen
,
T.
,
Hunter
,
R.
, and
Klug
,
H.
, 1999, “
Is the Nacelle-Mounted Anemometer an Acceptable Option in Performance Testing?
,”
Proceedings of European Wind Energy Conference Wind Energy for the Next Millenium
, James & James (Science publishers) Ltd., pp.
624
627
.
3.
Pedersen
,
T. F.
,
Gjerding
,
S.
,
Ingham
,
P.
,
Enevoldsen
,
P.
,
Hansen
,
J. K.
, and
Jørgensen
,
H. K.
, 2002, “
Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms
,” Report Risø-R-1330(EN), April, Risø National Laboratory, Roskilde, Danmark. Available at: http://130.226.56.153/rispubl/vea/veapdf/ris-r-1330.pdfhttp://130.226.56.153/rispubl/vea/veapdf/ris-r-1330.pdf.
4.
Bitsuamlak
,
G. T.
,
Stathopoulos
,
T.
, and
Bédard
,
C.
, 2004, “
Numerical Evaluation of Wind Flow Over Complex Terrain: Review
,”
J. Aerosp. Eng.
,
17
(
4
), pp.
135
145
.
5.
Migoya
,
E.
,
Crespo
,
A.
,
Garcia
,
J.
,
Moreno
,
F.
,
Manuel
,
F.
,
Jimenez
,
A.
, and
Costa
,
A.
, 2007, “
Comparative Study of the Behavior of Wind-Turbines in a Wind Farm
,”
Energy
,
32
(
10
), pp.
1871
1885
.
6.
Griffiths
,
A.
, and
Middleton
,
J.
, 2010, “
Simulations of Separated Flow Over Two-Dimensional Hills
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
3
), pp.
155
160
.
7.
Chow
,
F. K.
, and
Street
,
R. L.
, 2009, “
Evaluation of Turbulence Closure Models for Large-Eddy Simulation Over Complex Terrain: Flow Over Askervein Hill
,”
J. Appl. Meteorol. Climatol.
,
48
(
5
), pp.
1050
1065
.
8.
Bechmann
,
A.
, and
Sørensen
,
N. N.
, 2010, “
Hybrid RANS/LES Method for Wind Flow Over Complex Terrain
,”
Wind Energy
,
13
(
1
), pp.
36
50
.
9.
Kim
,
H.
, 2000, “
Numerical Simulation of Wind Flow Over Hilly Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
87
(
1
), pp.
45
60
.
10.
Castro
,
F. A.
,
Palma
,
J. M. L. M.
, and
Silva Lopes
,
A.
, 2003, “
Simulation of the Askervein Flow. Part 1: Reynolds Averaged Navier Stokes Equations (k Epsilon Turbulence Model)
,”
Boundary-Layer Meteorol.
,
107
(
3
), pp.
501
530
.
11.
Prospathopoulos
,
J.
, and
Voutsinas
,
S. G.
, 2006, “
Implementation Issues in 3D Wind Flow Predictions Over Complex Terrain
,”
J. Sol. Energy Eng.
,
128
(
4
), p.
539
.
12.
Crespo
,
A.
,
Hernández
,
J.
, and
Frandsen
,
S.
, 1999, “
Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
(
1
), pp.
1
24
.
13.
Prospathopoulos
,
J. M.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
, 2008, “
Modelling Wind Turbine Wakes in Complex Terrain
,”
Proceedings of European Wind Energy Conference and Exhibition
, Vol.
14
, pp.
42
46
.
14.
Zahle
,
F.
, and
Sørensen
,
N. N.
, 2011, “
Characterization of the Unsteady Flow in the Nacelle Region of a Modern Wind Turbine
,”
Wind Energy
,
14
, pp.
271
283
.
15.
El Kasmi
,
A.
, and
Masson
,
C.
, 2008, “
An Extended kɛ Model for Turbulent Flow Through Horizontal-Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
1
), pp.
103
122
.
16.
Pedersen
,
T. F.
, 2004, “
On Wind Turbine Power Performance Measurements at Inclined Airflow
,”
Wind Energy
,
7
(
3
), pp.
163
176
.
17.
Ameur
,
K.
,
Masson
,
C.
, and
Eecen
,
P. J.
, 2011, “
2D and 3D Numerical Simulation of the Wind-Rotor/Nacelle Interaction in an Atmospheric Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
8
), pp.
833
844
.
18.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
19.
Sumner
,
J.
,
Watters
,
C. S.
, and
Masson
,
C.
, 2010, “
CFD in Wind Energy: The Virtual, Multiscale Wind Tunnel
,”
Energies
,
3
(
5
), pp.
989
1013
.
20.
Crespo
,
A.
,
Manwel
,
F.
,
Moreno
,
D.
,
Fraga
,
E.
, and
Hernandez
,
J.
, 1985, “
Numerical Analysis of Wind Turbine Wakes
,”
Proceedings of Workshop on Wind Energy Application
,
Delphi, Greece
, pp.
15
25
.
21.
Richards
,
P.
, and
Hoxey
,
R.
, 1993, “
Appropriate Boundary Conditions for Computational Wind Engineering Models Using the k-Epsilon Turbulence Model
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
145
153
.
22.
Eecen
,
P.
, and
Verhoef
,
J.
, 2007, “
EWTW Meteorological database Description June 2003–May 2007
,” ReportECN-E–07-041, ECN Wind Energy, The Netherlands. Available at http://www.ecn.nl/docs/library/report/2007/e07041.pdfhttp://www.ecn.nl/docs/library/report/2007/e07041.pdf.
23.
Sørensen
,
J. N.
, and
Myken
,
A.
, 1992, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
139
149
.
24.
Masson
,
C.
, and
Smaïli
,
A.
, 2006, “
Numerical Study of Turbulent Flow Around a Wind Turbine Nacelle
,”
Wind Energy
,
9
(
3
), pp.
281
298
.
25.
Rokenes
,
K.
, and
Krogstad
,
P. A.
, 2009, “
Wind Tunnel Simulation of Terrain Effects on Wind Farm Siting
,”
Wind Energy
,
12
(
4
), pp.
391
410
.
26.
Lemelin
,
D. R.
,
Surry
,
D.
, and
Davenport
,
A. G.
, 1988, “
Simple Approximations for Wind Speed-Up Over Hills
,”
J. Wind Eng. Ind. Aerodyn.
,
28
, pp.
117
127
.
27.
Bowen
,
A. J.
, and
Lindley
,
D.
, 1977, “
A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground Over Various Escarpment Shapes
,”
Boundary-Layer Meteorol.
,
12
(
3
), pp.
259
271
.
28.
Albers
,
A.
,
Klug
,
H.
, and
Westermann
,
D.
, 1999, “
Power Performance Verification
,”
Proceedings of European Wind Energy Conference Wind Energy for the Next Millenium
, James & James (Science publishers) Ltd.
29.
Parameswaran
,
S.
,
Kiris
,
I.
,
Sun
,
R.
, and
Gleason
,
M.
, 1993, “
Flow Structure Around a 3D Bluff Body in Ground Proximity: A Computational Study
,”
J. Wind Eng. Ind. Aerodyn.
,
46–47
, pp.
791
800
.
You do not currently have access to this content.