Many types of desalination technologies are widely used around the worldwide. Thermal and membrane types dominated the market share among the other technologies (freezing, electrodialysis, and ion-exchange). Currently, multistage flash considered the power house of desalination technologies; however, in the last few decades, multi effect distillation and reverse osmosis (RO) technologies were proven as reliable and cost efficient processes. But comparing and electing the most efficient type between conventional desalination technologies is still under scope. It is very hard to decide which type or technique is reliable and thermo-economically efficient. Also, it becomes harder to decide which type is thermo-economically efficient when desalination process is combined with solar energy. In this work, different types of solar desalination processes are thermo-economically compared and analyzed. Results revel that RO and multi effect distillation-thermal vapor compression are recommended according to specific solar area (SSA m2/(m3/d)), total water price (TWP $/m3), thermo-economic product cost (cp $/GJ), and the gain ratio (GR). The comparisons were performed based on two scenarios: (1) different operating conditions due to each individual technology and (2) uniform operating conditions.

References

References
1.
Al-Sahali
,
M.
, and
Ettouney
,
H.
, 2007, “
Developments in Thermal Desalination Processes Design, Energy, and Costing Aspects
,”
Desalination
,
214
, pp.
227
240
.
2.
Hou
,
S.
,
Ye
,
S.
, and
Zhang
,
H.
, 2005, “
Performance Optimization of Solar Humidification–Dehumidification Desalination Process Using Pinch Technology
,”
Desalination
,
183
, pp.
143
149
.
3.
Delgado-Torres
,
A. M.
, and
García-Rodríguez
,
L.
, 2007, “
Preliminary Assessment of Solar Organic Rankine Cycles for Driving a Desalination System
,”
Desalination
,
216
, pp.
252
275
.
4.
Delgado-Torres
,
A. M.
, and
García-Rodríguez
,
L.
, 2007, “
Comparison of Solar Technologies for Driving a Desalination System by Means of an Organic Rankine Cycle
,”
Desalination
,
216
, pp.
276
291
.
5.
Nafey
,
A. S.
,
Sharaf
M. A.
, and
García-Rodríguez
,
L.
, 2010, “
Thermo-Economic Analysis of a Combined Solar Organic Rankine Cycle-Reverse Osmosis Desalination Process With Different Energy Recovery Configurations
,”
Desalination
,
261
, pp.
138
147
.
6.
Voros
,
N. G.
,
Kiranoudis
,
C. T.
, and
Maroulis
,
Z. B.
, 1998, “
Solar Energy Exploitation for Reverse Osmosis Desalination Plants
,”
Desalination
,
115
, pp.
83
101
.
7.
Nafey
,
A. S.
,
Mohamad
,
M. A.
,
El-Helaby
,
S. O.
, and
Sharaf
,
M. A.
, 2007, “
Theoretical and Experimental Study of a Small Unit for Solar Desalination Using Flashing Process
,”
Energy Convers. Manage.
,
48
, pp.
528
538
.
8.
Bernhard
,
M.
, and
Zarza
,
E.
, 1996, “
Advanced MED Solar Desalination Plants: Configurations, Costs, Future-Seven Years of Experience at the Plataforma Solar de Almeria (Spain)
,”
Desalination
,
108
, pp.
51
58
.
9.
Belessiotis
,
V.
, and
Delyannis
,
E.
, 2000, “
The History of Renewable Energies for Water Desalination
,”
Desalination
,
128
, pp.
147
159
.
10.
Madani
,
A. A.
, 1990, “
Economics of Desalination Systems
,”
Desalination
,
78
, pp.
187
200
.
11.
Delyannis
,
E.
, 1987, “
Status of Solar Assisted Desalination: A Review
,”
Desalination
,
67
, pp.
3
19
.
12.
Nafey
,
A. S.
,
Fath
,
H. S.
, and
Mabrouk
,
A. A.
, 2006, “
Thermo-Economic Investigation of Multi Effect Evaporation (MEE) and Hybrid multi Effect Evaporation-Multi Stage Flash (MEE-MSF) Systems
,”
Desalination
,
201
, pp.
241
254
.
13.
Nafey
,
A. S.
,
Fath
,
H.
, and
Mabrouk
,
A.
, 2008, “
Thermo-Economic Design of a Multi-Effect Evaporation Mechanical Vapor Compression (MEE–MVC) Desalination Process
,”
Desalination
,
230
, pp.
1
15
.
14.
Nafey
,
A. S.
,
Sharaf
,
M. A.
, and
García-Rodríguez
,
L.
, 2010, “
A New Visual Library for Design and Simulation of Solar Desalination Systems (SDS)
,”
Desalination
,
259
, pp.
197
207
.
15.
Nafey
,
A. S.
, and
Sharaf
,
M. A.
, 2010, “
Combined Solar Organic Rankine Cycle With Reverse Osmosis Desalination Process: Energy, Exergy, and Cost Evaluations
,”
Renewable Energy
,
35
, pp.
2571
2580
.
16.
Sharaf
,
M. A.
,
Nafey
,
A. S.
, and
García-Rodríguez
,
L.
, 2011, “
Exergy and Thermo-Economic Analyses of a Combined Solar Organic Cycle With Multi Effect Distillation (MED) Desalination Process
,”
Desalination
,
272
, pp.
135
147
.
17.
Sharaf
,
M. A.
,
Nafey
,
A. S.
, and
García-Rodríguez
,
L.
, 2011, “
Thermo-Economic Analysis of Solar Thermal Power Cycles Assisted MED-VC (Multi Effect DistillationVapor Compression) Desalination Processes
,”
Energy
,
36
, pp.
2753
2764
.
18.
Li
,
W. K.
, 1995,
Applied Thermodynamics-Availability Method and Energy Conversion
,
University of North Dakota State, Chap. 1–3, Taylor & Francis
,
Washington, DC
.
19.
Banat
,
F.
, and
Jwaied
,
N.
, “
Exergy Analysis of Desalination by Solar-Powered Membrane Distillation Units
,”
Desalination
,
230
, pp.
27
40
.
20.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
, 1996,
Handbook of Thermal Design and Optimization
,
Wiley
,
New York
, Chap. 8.
21.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
, 2002,
Fundamental of Salt Water Desalination
,
Kuwait University
,
Elsevier Science, The Netherlands
.
22.
Darwish
,
M. A.
, and
Abdul Rahim
,
H. K.
, 2008, “
Feed Water Arrangements in a Multi-Effect Desalting System
,”
Desalination
,
228
, pp.
30
54
.
23.
Najem
,
M
,
Darwish
,
M. A.
, and
Youssef
,
F. A.
, 1997, “
Thermovapor Compression Desalters: Energy and Availability-Analysis of Single- and Multi-Effect Systems
,”
Desalination
,
110
, pp.
223
238
.
24.
www.therminol.com
You do not currently have access to this content.