This research presents a new meteorological variables prediction approach for Malaysia using artificial neural networks. The developed model predicts four meteorological variables using sun shine ratio, day number, and location coordinates. These meteorological variables are solar energy, ambient temperature, wind speed, and relative humidity. However, three statistical values are used to evaluate the proposed model. These statistical values are mean absolute percentage error (MAPE), mean bias error (MBE), and root mean square error (RMSE). Based on results, the developed model predicts accurately the four meteorological variables. The MAPE, RMSE, and MBE in predicting solar radiation are 1.3%, 5.8 (1.8%), and 0.9 (0.3%), respectively, while the MAPE, RMSE, and MBE values for ambient temperature prediction are 1.3%, 0.4 (1.7%), and 0.1 (0.4%), respectively. In addition, the MAPE, RMSE, and MBE values in relative humidity prediction are 3.2%, 3.2, and 0.2. As for wind speed prediction, it is the worst in accuracy among the predicted variables because the MAPE, RMSE, and MBE values are 28.9%, 0.5 (31.3%), and 0.02 (1.25%). Such a developed model helps in sizing photovoltaic (PV) systems using solar energy and ambient temperature records. Moreover, wind speed and relative humidity records could be used in estimating dust concentration group which leads to dust deposition on a PV system.

References

References
1.
Patel
,
M.
, 1999,
Wind and Solar Energy
,
1st ed.
,
CRC Press LLC
. UK, Oxford, UK.
2.
Boyle
,
G.
, 2004,
Renewable Energy
,
2nd ed.
,
Oxford
.
3.
The German Solar Energy Society
, 2005,
Planning and Installing Photovoltaic Systems
,
2nd ed.
,
Earthscan
, Germany.
4.
Denholm
,
P.
,
Drury
,
E.
,
Margolis
,
R.
, and
Mehos
,
M.
, 2010, “
Solar Energy: The Largest Energy Resource
,”
Generating Electricity in a Carbon-Constrained World
,
F. P.
Sioshansi
, ed.,
Academic Press
,
California
, pp.
271
302
.
5.
Mani
,
M.
, and
Pillai
,
R.
, 2010, “
Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
3124
3131
.
6.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1991,
Solar Engineering of Thermal Processes
,
John Wiley and Sons
, US.
7.
Coppolino
,
S.
, 1994, “
A New Correlation Between Clearness Index and Relative Sunshine
,”
Renewable Energy
,
4
(
4
), pp.
417
23
.
8.
Elizondo
,
D.
,
Hoogenboom
,
G.
, and
Mcclendon
,
R. W.
, 1994, “
Development of a Neural Network Model to Predict Daily Solar Radiation
,”
Agric. Forest Meteorol.
,
71
, pp.
115
132
.
9.
Williams
,
D. B.
, and
Zazueta
,
F. S.
, 1994, “
Solar Radiation Estimation via Neural Network
,”
Sixth International Conference on Computers in Agriculture
, ASAE, eds., Cancun, Mexico, pp.
140
146
.
10.
Williams
,
D.
, and
Zazueta
,
F.
, 1996, “
Solar Radiation Estimation via Neural Network
,”
Sixth International Conference on Radiation. Computers in Agriculture
, Cancun, Mexico, pp.
1143
1149
.
11.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
, 1998, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renewable Energy
,
14
(
1–4
), pp.
179
184
.
12.
Alawi
,
S. M.
, and
Hinai
,
H. A.
, 1998, “
An ANN-Based Approach for Predicting Global Radiation in Locations With no Direct Measurement Instrumentation
,”
Renewable Energy
,
14
(
1–4
), pp.
199
204
.
13.
Guessoum
,
A.
,
Boubkeur
,
S.
, and
Maafi
,
A.
, 1998, “
A Global Irradiation Model Using Radial Basis Function Neural Network
,”
World Renewable Energy Congress
, United Kingdom, pp.
332
336
.
14.
Hontoria
,
L.
,
Riesco
,
J.
,
Zufiria
,
P.
, and
Aguilera
,
J.
, 1999, “
Improved Generation of Hourly Solar Radiation Artificial Series Using Neural Networks
,” EANN99, Warsaw.
15.
Zufiria
,
P.
,
Va´zquez
,
A.
,
Riesco
,
J.
,
Aguilera
,
J.
, and
Hontoria
,
L.
, 1999, “
A Neural Network Approach for Generating Solar Radiation Artificial Series
,”
Proceedings of the IWANN099
, Jun. 4–5, Alicante, Spain.
16.
Mohandes
,
M.
,
Balghonaim
,
A.
,
Kassas
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
, 2000, “
Use of Radial Basis Functions for Estimating Monthly Mean Daily Solar Radiation
,”
Sol. Energy
,
68
(
2
), pp.
161
168
.
17.
Hontoria
,
L.
,
Riesco
,
J.
,
Zufiria
,
P.
, and
Aguilera
,
J.
, 2000, “
Application of Neural Networks in the Solar Radiation Field. Obtainment of Solar Radiation Maps
,”
16th European Photovoltaic for Chemical Engineers
, Vol.
3
,
Elsevier, Amsterdam
, pp.
385
408
.
18.
Sfetsos
,
A.
, and
Coonick
,
A. H.
, 2000, “
Univariate and Multivariate Forecasting of Hourly Solar Radiation With Artificial Intelligence Techniques
,”
Sol. Energy
,
68
(
2
), pp.
169
178
.
19.
Mubiru
,
E. J.
, and
Banda
,
K. B.
, 2007, “
Estimation of Monthly Average Daily Global Solar Irradiation Using Artificial Neural Networks
,”
Sol. Energy
,
82
(
2
), pp.
181
187
.
20.
Donald G. S.
Chuah
, and
Lee
,
S. L.
, 1992, “
Solar Radiation in Peninsular Malaysia: Statistical Presentations
,”
Energy Convers. Manage.
,
22
(
1
), pp.
71
84
.
21.
Sopian
,
K.
, and
Othman
,
M.
, 1992, “
Estimates of Monthly Average Daily Global Solar Radiation in Malaysia
,”
Renewable Energy
,
2
(
3
), pp.
319
325
.
22.
Tasadduq
,
I.
,
Rehman
,
S.
, and
Bubshait
,
K.
, 2002, “
Application of Neural Networks for the Prediction of Hourly Mean Surface Temperatures in Saudi Arabia
,”
Renewable Energy
,
25
, pp.
545
554
.
23.
Abdel-Aal
,
R. E.
, 2004, “
Hourly Temperature Forecasting Using Abductive Networks
,”
Eng. Applic. Artif. Intell.
,
17
(
5
), pp.
543
556
.
24.
Dombayc
,
O.
, and
Gölcü
,
M.
, 2009, “
Daily Means Ambient Temperature Prediction Using Artificial Neural Network Method: A Case Study of Turkey
,”
Renewable Energy
,
34
(
4
), pp.
1158
1161
.
25.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
, 1983, “
Estimation of Degree-Days and Ambient Temperature Bin Data From Monthly-Average Temperatures
,”
ASHRAE J.
,
25
(
6
), pp.
60
65
.
26.
Njau
,
E. C.
, 1994, “
An Electronic System for Predicting Air Temperature and Wind Speed Patterns
,”
Renewable Energy
,
4
(
7
), pp.
793
805
.
27.
Boland
,
J.
, 1995, “
Time-Series Analysis of Climatic Variables
,”
Sol. Energy
,
55
(
5
), pp.
377
388
.
28.
Njau
,
E. C.
, 1997, “
A New Analytical Model for Temperature Prediction
,”
Renewable Energy
,
11
(
1
), pp.
61
68
.
29.
Njau
,
E. C.
, 1991, “
Prediction of Meteorological Parameters: I. Analytical Method
,”
Nuovo Cimento
,
14C
, pp.
473
488
.
30.
Njau
,
E. C.
, 1993, “
Prediction of Meteorological Parameters: II. Methods Based on an Electronic System
,”
Proceedings of the International Conference on Global Warming and Climate Change
, Geneva, Switzerland.
31.
Mohandes
,
M. A.
,
Rehman
,
S.
, and
Halawani
,
T. O.
, 1998, “
A Neural Networks Approach for Wind Speed Prediction
,”
Renewable Energy
,
13
(
3
), pp.
345
354
.
32.
Sfetsos
,
A.
, 2000, “
A Comparison of Various Forecasting Techniques Applied to Mean Hourly Wind Speed Time Series
,”
Renewable Energy
,
21
, pp.
23
35
.
33.
Barbounis
,
T. G.
,
Theocharis
,
J. B.
,
Alexiadis
,
M. C.
, and
Dokopoulos
,
P. S.
, 2006, “
Long-Term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models
,”
IEEE Trans. Energy Convers.
,
21
(
1
), pp.
273
284
.
34.
Barbounis
,
T. G.
, and
Theocharis
,
J. B.
, 2007, “
Locally Recurrent Neural Networks for Wind Speed Prediction Using Spatial Correlation
,”
Inf. Sci.
,
177
, pp.
5775
5797
.
35.
Bilgili
,
M.
,
Sahin
,
B.
, and
Yasar
,
A.
, 2007, “
Application of Artificial Neural Networks for the Wind Speed Prediction of Target Station Using Reference Stations Data
,”
Renewable Energy
,
32
(
14
), pp.
2350
2360
.
36.
Cadenasa
,
E.
, and
Riverab
,
W.
, 2007, “
Wind Speed Forecasting in the South Coast of Oaxaca, Mexico
,”
Renewable Energy
,
32
, pp.
2116
2128
.
37.
Flores
,
P.
,
Tapia
,
A.
, and
Tapia
,
G.
, 2005, “
Application of a Control Algorithm for Wind Speed Prediction and Active Power Generation
,”
Renewable Energy
,
305
, pp.
523
536
.
38.
Aksoy
,
H.
,
Fuat
,
Z. T.
, and
Aytek
,
A.
,
Unal
E. N.
, 2004, “
Stochastic Generation of Hourly Mean Wind Speed Data
,”
Renewable Energy
,
29
, pp.
2111
2131
.
39.
Yassen
,
M. E.
, 2003, “
The Relationship Between Dust Particulates and Meteorological Parameters in Kuala Lumpur and Petaling Jaya, Malaysia
,”
Paper presented at the 5th International Conference on Urban Climate
, Lodes, Poland, Vol.
2
, pp.
189
192
.
40.
El-Shobokshy
,
M. S.
, and
Hussein
,
F. M.
, 1993, “
Effect of the Dust With Different Physical Properties on the Performance of Photovoltaic Cells
,”
Sol. Energy
,
51
(
6
), pp.
505
11
.
41.
El-Shobokshy
,
M. S.
, and
Hussein
,
F. M.
, 1993, “
Degradation of Photovoltaic Cell Performance due to Dust Deposition on to its Surface
,”
Renewable Energy
,
3
(
6/7
), pp.
585
590
.
42.
Al-Hasan
,
A. Y.
, 1998, “
A New Correlation for Direct Beam Solar Radiation Received by Photovoltaic Panel With Sand Dust Accumulated on its Surface
,”
Sol. Energy
,
63
(
5
), pp.
323
333
.
43.
Hassan
,
A. H.
,
Rahoma
,
U. A.
,
Elminir
,
H. K.
, and
Fathy
,
A. M.
, 2005, “
Effect of Airborne Dust Concentration on the Performance of PV Modules
,”
J. Astron. Soc. Egypt
,
13
(
1
), pp.
24
38
.
44.
Kymakis
,
E.
,
Kalykakis
,
S.
, and
Papazoglou
,
T. M.
, 2009, “
Performance Analysis of a Grid Connected Photovoltaic Park on the Island of Crete
,”
Energy Convers. Manage.
,
50
, pp.
433
438
.
45.
Lamont
,
L.
, and
El Chaar
,
L.
, 2011, “
Enhancement of a Stand-Alone Photovoltaic System’s Performance: Reduction of Soft and Hard Shading
,”
Renewable Energy
,
36
, pp.
1306
1310
.
46.
Goossens
,
D.
,
Offer
,
Z. Y.
, and
Zangvil
,
A.
, 1993, “
Wind Tunnel Experiments and Field Investigations of Eolian Dust Deposition on Photovoltaic Solar Collectors
,”
Sol. Energy
,
50
(
1
), pp.
75
84
.
47.
Tahboub
,
Z.
, and
Chiesa
,
M.
, 2010, “
Weather Conditions, Dust Accumulation and Their Effect on PV Performance: Outdoor Testing—Abu Dhabi
,” Masdar Institute Report, Oct. 21, 2010.
48.
Shaharuddin
,
M.
,
Mohd
,
A.
,
Mohd
,
J.
,
Othman
,
N.
,
Karim
,
A.
, and
Sopian
,
K.
, 2008, “
Application of Wavelet Transform on Airborne Suspended Particulate Matter and Meteorological Temporal Variations
,”
WSEAS Trans. Environ. Dev.
,
4
(
2
), pp.
89
98
.
49.
Mokhtar
,
A.
,
Mohd
,
S.
,
Mohd
,
J.
,
Othman
,
N.
,
Karim
,
A.
, and
Sopian
,
K.
, 2009, “
Relationships Between Airborne Particulate Matter and Meteorological Variables Using Non-Decimated Wavelet Transform
,”
Eur. J. Sci. Res.
,
27
(
2
), pp.
308
312
. Available at http://www.eurojournals.com/ejsr_27_2_15.pdf
50.
Chow
,
K. K.
, and
Lim
,
J. T.
, 1984, “
Monitoring of Suspended Particulate in Petaling Jaya
,”
Urbanization and Ecodevelopment
,
Y. H.
Yip
, and
K. S.
Low
, eds.,
University of Malaya
, Kuala lumpur, Malaysia, pp.
178
185
.
51.
Sham
,
S.
, 1979, “
Aspect of Air Pollution Climatology in a Tropical City. A Case of Kuala Lumpur-Petaling Jaya, Area Malaysia
,” UKM press, Bangi, Malaysia.
52.
Mehrotra
,
K.
,
Mohan
,
C.
, and
Ranka
,
K.
, 1996,
Elements of Artificial Neural Networks
,
MIT press
,
Cambridge, UK
.
53.
Cihan
H.
,
Anna
,
L. B.
, and
David
,
L. K.
, 2000,
Intelligent Engineering Systems Through Artificial Neural Network
,
2nd ed.
,
ASME Press
,
New York
.
You do not currently have access to this content.