Three models for detecting abnormalities of wind turbine vibrations reflected in time domain are discussed. The models were derived from the supervisory control and data acquisition (SCADA) data collected at various wind turbines. The vibration of a wind turbine is characterized by two parameters, i.e., drivetrain and tower acceleration. An unsupervised data-mining algorithm, the k-means clustering algorithm, was applied to develop the first monitoring model. The other two monitoring models for detecting abnormal values of drivetrain and tower acceleration were developed by using the concept of a control chart. SCADA vibration data sampled at 10 s intervals reflects normal and faulty status of wind turbines. The performance of the three monitoring models for detecting abnormalities of wind turbines reflected in vibration data of time domain was validated with the SCADA industrial data.

References

References
1.
Swedish Standard SS-EN 13306, European Standard EN 13306, 2001, “
Maintenance Terminology
”.
2.
Nilsson
,
J.
, and
Bertling
,
L.
, 2007, “
Maintenance Management of Wind Power Systems Using Condition Monitoring Systems—Life Cycle Cost Analysis for Two Case Studies
,”
IEEE Trans. Energy Convers.
,
22
(
1
), pp.
223
229
.
3.
Andrawus
,
J. A.
,
Watson
,
J. F.
,
Kishk
,
M.
, and
Adam
,
A.
, 2006, “
The Selection of a Suitable Maintenance Strategy for Wind Turbines
,”
Wind Eng.
,
30
(
6
), pp.
471
486
.
4.
Hameed
,
Z.
,
Ahn
,
S. H.
, and
Cho
,
Y. M.
, 2010, “
Practical Aspects of a Condition Monitoring System for a Wind Turbine With Emphasis on Its Design, System Architecture, Testing and Installation
,”
Renewable Energy
,
35
(
5
), pp.
879
894
.
5.
Caselitz
,
P.
, and
Giebhardt
,
J.
, 2005, “
Rotor Condition Monitoring for Improved Operational Safety of Offshore Wind Energy Converters
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
253
261
.
6.
Yang
,
W.
,
Tavner
,
P. J.
, and
Wilkinson
,
M. R.
, 2009, “
Condition Monitoring and Fault Diagnosis of a Wind Turbine Synchronous Generator Drive Train
,”
IET Renewable Power Generation
,
3
(
1
), pp.
1
11
.
7.
Wiggelinkhuizen
,
E.
,
Verbruggen
,
T.
,
Braam
,
H.
,
Rademakers
,
L.
,
Xiang
,
J.
, and
Watson
,
S.
, 2008, “
Assessment of Condition Monitoring Techniques for Offshore Wind Farms
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), pp.
1
9
.
8.
Kusiak
,
A.
,
Zheng
,
H.-Y.
, and
Song
,
Z.
, 2009, “
Models for Monitoring Wind Farm Power
,”
Renewable Energy
,
34
(
3
), pp.
583
590
.
9.
Woodall
,
W. H.
,
Spitzner
,
D. J.
,
Montgomery
,
D. C.
, and
Gupta
,
S.
, 2004, “
Using Control Charts to Monitor Process and Product Quality Profiles
,”
J. Quality Technol.
,
36
(
3
), pp.
309
320
. Available at: http://filebox.vt.edu/users/bwoodall/2004%20JQT%20WOODALL%20et%20al.pdf
10.
Mitra
,
A.
, 1998,
Fundamentals of Quality Control and Improvement
,
2nd ed.
,
Prentice Hall
,
Upper Saddle River, New Jersey, NJ
.
11.
Kang
,
L.
, and
Albin
,
S. L.
, 2000, “
On-Line Monitoring When the Process Yields a Linear Profile
,”
J. Quality Technol.
,
32
(
4
), pp.
418
426
.
12.
Mestek
,
O.
,
Pavlik
,
J.
, and
Suchanek
,
M.
, 1994, “
Multivariate Control Chart: Control Charts for Calibration Curves
,”
J. Anal. Chem.
,
350
(
6
), pp.
344
351
.
13.
Daubechies
,
I.
, 1992,
Ten Lectures on Wavelets
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
14.
Kobayashi
,
M.
, 1998,
Wavelets and their Applications: Case Studies
,
1st ed.
,
Philadelphia
,
Society for Industrial and Applied Mathematics, PA
.
15.
Tang
,
Y. Y.
,
Yang
,
L. H.
,
Liu
,
J.
, and
Ma
,
H.
, 2000,
Wavelet Theory and Its Application to Pattern Recognition
,
1st ed.
,
World Scientific
,
Singapore
.
16.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
, 2008,
Global Sensitivity Analysis. The Primer
,
John Wiley & Sons
,
Chichester, UK
.
17.
Tan
,
P. N.
,
Steinbach
,
M.
, and
Kumar
,
V.
, 2006,
Introduction to Data Mining
,
Addison Wesley
,
Boston, MA
.
18.
Devijver
,
P. A.
, and
Kittler
,
J.
, 1982,
Pattern Recognition: A Statistical Approach
,
Prentice-Hall
,
London, UK
.
19.
Mosteller
,
F.
, 1948, “
A k-Sample Slippage Test for an Extreme Population
,”
Ann. Math. Stat.
,
19
(
1
), pp.
58
65
.
20.
Montgomery
,
D. C.
, 2005,
Introduction to Statistical Quality Control
,
5th ed.
,
John Wiley
,
New York
.
21.
Witten
,
I. H.
, and
Frank
,
E.
, 2005,
Data Mining: Practical Machine Learning Tools and Techniques
,
2nd ed.
,
Morgan Kaufmann
,
San Francisco, CA
.
22.
Kohavi
,
R.
, and
John
,
G. H.
, 1997, “
Wrapper for Feature Subset Selection
,”
Artif. Intell.
,
97
(
1–2
), pp.
273
324
.
23.
Hansen
,
L. K.
, and
Salamon
,
P.
, 1990, “
Neural Network Ensembles
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
10
), pp.
993
1001
.
24.
Siegelmann
,
H.
, and
Sontag
,
E.
, 1994, “
Analog Computation via Neural Networks
,”
Theor. Comput. Sci.
,
131
(
2
), pp.
331
360
.
25.
Liu
,
G. P.
, 2001,
Nonlinear Identification and Control: A Neural Network Approach
,
Springer
,
London, UK
.
26.
Smith
,
M.
, 1993,
Neural Networks for Statistical Modeling
,
Van Nostrand Reinhold
,
New York
.
27.
Friedman
,
J. H.
, 2002, “
Stochastic Gradient Boosting
,”
Comput. Stat. Data Anal.
,
38
(
4
), pp.
367
378
.
28.
Friedman
,
J. H.
, 2001, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
29.
Schölkopf
,
B.
,
Burges
,
C. J. C.
, and
Smola
,
A. J.
, 1999,
Advances in Kernel Methods: Support Vector Learning
,
MIT
,
Cambridge, MA
.
30.
Steinwart
,
I.
, and
Christmann
,
A.
, 2008,
Support Vector Machines
,
Springer-Verlag
,
New York
.
31.
Breiman
,
L.
, 2001, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
32.
Breiman
,
L.
,
Friedman
,
J. H.
,
Olshen
,
R. A.
, and
Stone
,
C. J.
, 1984,
Classification and Regression Trees
,
Wadsworth & Brooks/Cole
,
Monterey, CA
.
33.
Shakhnarovish
,
G.
,
Darrell
,
T.
, and
Indyk
,
P.
, 2005,
Nearest-Neighbor Methods in Learning and Vision
,
MIT
,
Cambridge, MA
.
34.
Kusiak
,
A.
,
Li
,
M.Y.
, and
Zheng
,
H.-Y.
, 2010, “
Virtual Models of Indoor-Air-Quality Sensors
,”
Appl. Energy
,
87
(
6
), pp.
2087
2094
.
35.
Kusiak
,
A.
, and
Li
,
W.
, 2010, “
Virtual Models for Prediction of Wind Turbine Parameters
,”
IEEE Trans. Energy Convers.
,
25
(
1
), pp.
245
252
.
You do not currently have access to this content.