A high-temperature pressurized air-based receiver for power generation via solar-driven gas turbines is experimentally examined and numerically modeled. It consists of an annular reticulate porous ceramic (RPC) foam concentric with an inner cylindrical cavity-receiver exposed to concentrated solar radiation. Absorbed heat is transferred by combined conduction, radiation, and convection to the pressurized air flowing across the RPC. The governing steady-state mass, momentum, and energy conservation equations are formulated and solved numerically by coupled finite volume and Monte Carlo techniques. Validation is accomplished with experimental results using a 3 kW solar receiver prototype subjected to average solar radiative fluxes at the CPC outlet in the range 1870–4360 kW m−2. Experimentation was carried out with air and helium as working fluids, heated from ambient temperature up to 1335 K at an absolute operating pressure of 5 bars. The validated model is then applied to optimize the receiver design for maximum solar energy conversion efficiency and to analyze the thermal performance of 100 kW and 1 MW scaled-up versions of the solar receiver.

References

References
1.
Kribus
,
A.
,
Zaibel
,
R.
,
Carey
,
D.
,
Segal
,
A.
, and
Karni
,
J.
, 1998, “
A Solar-Driven Combined Cycle Power Plant
,”
Sol. Energy
,
62
, pp.
121
129
.
2.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
, 2002, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
J. Sol. Energy Eng.
,
124
(
2
), pp.
98
108
.
3.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
, Marcos
Crespo
,
M. J.
,
Altwegg
,
P.
, and
Enrile
,
J.
, 2006, “
Solar Gas Turbine Systems: Design, Cost and Perspectives
,”
Sol. Energy
,
80
(
10
), pp.
1231
1240
.
4.
Karni
,
J.
,
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Fiterman
,
A.
, and
Sagie
,
D.
, 1997, “
The DIAPR: A High-Pressure, High-Temperature Solar Receiver
,”
J. Sol. Energy Eng.
,
119
(
1
), pp.
74
78
.
5.
Kribus
,
A.
,
Doron
,
P.
,
Rubin
,
R.
,
Reuven
,
R.
,
Taragan
,
E.
,
Duchan
,
S.
, and
Karni
,
J.
, 2001, “
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1,200°C
,”
J. Sol. Energy Eng.
,
123
(
1
), pp.
10
17
.
6.
Buck
,
R.
,
Abele
,
M.
,
Kunberger
,
J.
,
Denk
,
T.
,
Heller
,
P.
, and
Lüpfert
,
E.
, 1999, “
Receiver for Solar-Hybrid Gas Turbine and Combined Cycle Systems
,”
Le J Phys. IV
,
09
(
PR3
), pp.
537
544
.
7.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
, 2006, “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Sol. Energy
,
80
(
10
), pp.
1225
1230
.
8.
Karni
,
J.
,
Kribus
,
A.
,
Ostraich
,
B.
, and
Kochavi
,
E.
, 1998, “
A High-Pressure Window for Volumetric Solar Receivers
,”
J. Sol. Energy Eng.
,
120
(
2
), pp.
101
107
.
9.
Roger
,
M.
,
Pfander
,
M.
, and
Buck
,
R.
, 2006, “
Multiple Air-Jet Window Cooling for High-Temperature Pressurized Volumetric Receivers: Testing, Evaluation, and Modeling
,”
J. Sol. Energy Eng.
,
128
(
3
), pp.
265
274
.
10.
Roger
,
M.
,
Rickers
,
C.
,
Uhlig
,
R.
,
Neumann
,
F.
, and
Polenzky
,
C.
, 2009, “
Infrared-Reflective Coating on Fused Silica for a Solar High-Temperature Receiver
,”
J. Sol. Energy Eng.
,
131
(
2
), p.
021004
.
11.
Bammert
,
K.
, and
Hegazy
,
A.
, 1986, “
Design Criterion for Tubed Solar-Heated Cavity Receivers
,”
Forsch. Ingenieurwes.
,
52
(
4
), pp.
101
110
.
12.
Amsbeck
,
L.
,
Buck
,
R.
,
Heller
,
P.
,
Jedamski
,
J.
, and
Uhlig
,
R.
, 2008, “
Development of a Tube Receiver for a Solar-Hybrid Microturbine System
,”
Proceedings of the 14th Biennial CSP Solarpaces Symposium 2008
, Las Vegas, NV.
13.
Vrinat
,
M.
,
Ferrière
,
A.
,
Mercier
,
P.
, and
Pra
,
F.
, 2008, “
Development of a High Temperature Air Solar Receiver Based on Compact Heat Exchanger Technology
,”
Proceedings of the 14th Biennial CSP Solarpaces Symposium 2008
, Las Vegas, NV.
14.
Jarvinen
,
P. O.
, 1977, “
Solar-Heated-Air Receivers
,”
Sol. Energy
,
19
(
2
), pp.
139
147
.
15.
Strumpf
,
H. J.
,
Kotchick
,
D. M.
, and
Coombs
,
M. G.
, 1982, “
High-Temperature Ceramic Heat Exchanger Element for a Solar Thermal Receiver
,”
J. Sol. Energy Eng.
,
104
(
4
), pp.
305
309
.
16.
W.
Haldenwanger
Technische Keramik GmbH&Co.KG, 2011, “Halsic R/ RX/ I/ S,” www.haldenwanger.comwww.haldenwanger.com.
17.
Heraeus, 2011, “Quartz Glass for Optics Data and Properties,” http://optics.heraeus-quarzglas.comhttp://optics.heraeus-quarzglas.com.
18.
Hischier
,
I.
,
Hess
,
D.
,
Lipiński
,
W.
,
Modest
,
M.
, and
Steinfeld
,
A.
, 2009, “
Heat Transfer Analysis of a Novel Pressurized Air Receiver for Concentrated Solar Power via Combined Cycles
,”
J. Thermal Sci. Eng. Appl.
,
1
(
4
), p.
041002
.
19.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
, 2007, “
A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
20.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
21.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer
,
New York
.
22.
Petrasch
,
J.
,
Wyss
,
P.
,
Stämpfli
,
R.
, and
Steinfeld
,
A.
, 2008, “
Tomography-Based Multiscale Analyses of the 3D Geometrical Morphology of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
,
91
(
8
), pp.
2659
2665
.
23.
Petrasch
,
J.
,
Schrader
,
B.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2008, “
Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics
,”
J. Heat Transfer
,
130
(
3
), p.
032602
.
24.
Petrasch
,
J.
,
Meier
,
F.
,
Friess
,
H.
, and
Steinfeld
,
A.
, 2008, “
Tomography Based Determination of Permeability, Dupuit-Forchheimer Coefficient, and Interfacial Heat Transfer Coefficient in Reticulate Porous Ceramics
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
315
326
.
25.
Ushio Europe
,
B. V.
, 2010, “High Output, Water-Cooled Xenon Lamps,” www.ushio.nlwww.ushio.nl.
26.
Petrasch
,
J.
, 2010, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME Conf. Proc.
,
2010
(
43956
), pp.
125
132
.
27.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
28.
Leibfried
,
U.
, and
Ortjohann
,
J.
, 1995, “
Convective Heat Loss From Upward and Downward-Facing Cavity Solar Receivers: Measurements and Calculations
,”
J. Sol. Energy Eng.
,
117
(
2
), pp.
75
84
.
29.
ANSYS® Academic Teaching Advanced, Release 12.1.
30.
ANSYS® Workbench™.
31.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
Elsevier Academic Press
,
Burlington, MA
.
32.
Raithby
,
G.
, 1999, “
Discussion of the Finite-Volume Method for Radiation, and Its Application Using 3D Unstructured Meshes
,”
Numer. Heat Transfer, Part B
,
35
(
4
), pp.
389
405
.
33.
Liu
,
B.
,
Hayes
,
R. E.
,
Yi
,
Y.
,
Mmbaga
,
J.
,
Checkel
,
M. D.
, and
Zheng
,
M.
, 2007, “
Three Dimensional Modelling of Methane Ignition in a Reverse Flow Catalytic Converter
,”
Comput. Chem. Eng.
,
31
(
4
), pp.
292
306
.
34.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
, 2009,
Gas Turbine Theory
,
Pearson Education
,
Essex, England
.
35.
Richerson
,
D.
, 2005,
Modern Ceramic Engineering: Properties, Processing, and Use in Design
,
CRC Press
,
Boca Raton, FL, New York, NY, Oxon, UK.
36.
Buck
,
R.
,
Brauning
,
T.
,
Denk
,
T.
,
Pfander
,
M.
,
Schwarzbozl
,
P.
, and
Tellez
,
F.
, 2002, “
Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS)
,”
J. Sol. Energy Eng.
,
124
(
1
), pp.
2
9
.
37.
Design Institute for Physical Property Research/AIChE, 2009, “Design Institute for Physical Properties, Sponsored by AIChE DIPPR Project 801—Full Version.”
38.
Munro
,
R. G.
, 1997, “
Material Properties of a Sintered α-SiC
,”
J. Phys. Chem. Ref. Data
,
26
(
5
), pp.
1195
1203
.
39.
Zircar Ceramics Inc., 2011, “Alumina Insulation Type SALI, Characteristics & Properties,” www.zircarceramics.comwww.zircarceramics.com.
40.
Neuer
,
G.
, 1995, “
Spectral and Total Emissivity Measurements of Highly Emitting Materials
,”
Int. J. Thermophys.
,
16
(
1
), pp.
257
265
.
41.
Taimarov
,
M. A.
,
Garifullin
,
F. A.
, and
Davletbaeva
,
D. Z.
, 1987, “
Emissivity of Aluminosilicate Refractories
,”
J. Eng. Phys. Thermophys.
,
53
(
3
), pp.
1027
1031
.
42.
Coray
,
P.
, 2010, “
Experimental Determination of Spectral Radiative Heat Transfer Properties in Participating Media
,” Dissertation No. 19080, ETH Zurich.
43.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
, 2010, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
J. Heat Transfer
,
132
(
2
), p.
023305
.
You do not currently have access to this content.