The oxidation of three-dimensionally ordered macroporous (3DOM) CeO2 (ceria) by H2O and CO2 at 1100 K is presented in comparison to the oxidation of nonordered mesoporous and sintered, low porosity ceria. 3DOM ceria, which features interconnected and ordered pores, increases the maximum H2 and CO production rates over the low porosity ceria by 125% and 260%, respectively, and increases the maximum H2 and CO production rates over the nonordered mesoporous cerium oxide by 75% and 175%, respectively. The increase in the kinetics of H2O and CO2 splitting with 3DOM ceria is attributed to its enhanced specific surface area and to its interconnected pore system that facilitates the transport of reacting species to and from oxidation sites.

References

References
1.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen: A Review
,”
Sol. Energy
,
78
, pp.
603
615
.
2.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
,
23
, pp.
767
774
.
3.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
,
31
, pp.
2805
2822
.
4.
Kodama
,
T.
, and
Gokon
,
N.
, 2007, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev.
,
107
, pp.
4048
4077
.
5.
Meredig
,
B.
, and
Wolverton
,
C.
, 2009, “
First-Principles Thermodynamic Framework for the Evaluation of Thermochemical H2O- or CO2-Splitting Materials
,”
Phys. Rev. B
,
80
,
245119
.
6.
Venstrom
,
L. J.
, and
Davidson
,
J. H.
, 2010, “
Splitting Water and Carbon Dioxide via the Heterogeneous Oxidation of Zinc Vapor: Thermodynamic Considerations
,”
J. Sol. Energy Eng.
,
133
,
011017
.
7.
Charvin
,
P.
,
Abanades
,
S.
,
Lemont
,
F.
, and
Flamant
,
G.
, 2008, “
Experimental Study of SnO2/SnO/Sn Thermochemical Systems for Solar Production of Hydrogen
,”
AIChE J.
,
54
, pp.
2759
2767
.
8.
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Siegel
,
N. P.
, and
Miller
,
J. E.
, 2008, “
Two-Step Water Splitting Using Mixed-Metal Ferrites: Thermodynamic Analysis and Characterization of Synthesized Materials
,”
Energy Fuels
,
22
, pp.
4115
4124
.
9.
Kodama
,
T.
,
Gokon
,
N.
, and
Yamamoto
,
R.
, 2008, “
Thermochemical Two-Step Water Splitting by ZrO2-Supported NixFe3−xO4 for Solar Hydrogen Production
,”
Sol. Energy
,
82
, pp.
73
79
.
10.
Abanades
,
S.
, and
Flamant
,
G.
, 2006, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
, pp.
1611
1623
.
11.
Kaneko
,
H.
,
Miura
,
T.
,
Ishihara
,
H.
,
Taku
,
S.
,
Yokoyama
,
T.
,
Nakajima
,
H.
, and
Tamaura
,
Y.
, 2007, “
Reactive Ceramics of CeO2-MOx (M = Mn, Fe, Ni, Cu) for H2 Generation by Two-Step Water Splitting Using Concentrated Solar Thermal Energy
,”
Energy
,
32
, pp.
656
663
.
12.
Chueh
,
W. C.
, and
Haile
,
S. M.
, 2009, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
, pp.
735
739
.
13.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Evans
,
L. R.
,
Siegel
,
N. P.
, and
Stuecker
,
J. N.
, 2008, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
, pp.
4714
4728
.
14.
Chueh
,
W. C.
, and
Haile
,
S. M.
, 2010, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. London, Ser. A
,
368
, pp.
3269
3294
.
15.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
, 2010, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
, pp.
4163
4173
.
16.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S.
, and
Steinfeld
,
A.
, 2010, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
, pp.
1797
1801
.
17.
Stein
,
A.
,
Li
,
F.
, and
Denny
,
R.
, 2008, “
Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles
,”
Chem. Mater.
,
20
, pp.
649
666
.
18.
Zhang
,
G.
,
Zhao
,
Z.
,
Liu
,
J.
,
Jiang
,
G.
,
Duan
,
A.
,
Zheng
,
J.
,
Chen
,
S.
, and
Zhou
,
R.
, 2010, “
Three Dimensionally Ordered Macroporous Ce1-xZrxO2 Solid Solutions for Diesel Soot Combustion
,”
Chem. Commun.
,
46
, pp.
457
459
.
19.
Tonti
,
D.
,
Martínez
,
L.
,
Torralva
,
M. J.
,
Enciso
,
E.
,
Roman
,
E.
, and
Sanz
,
J.
, 2010, “
Redox Properties of Ordered Macroporous Ce-Zr Mixed Oxides
,”
J. Electrochem. Soc.
,
157
, pp.
B1499
B1504
.
20.
Umeda
,
G. A.
,
Chueh
,
W. C.
,
Noailles
,
L.
,
Haile
,
S. M.
, and
Dunn
,
B. S.
, 2008, “
Inverse Opal Ceria-Zirconia: Architectural Engineering for Heterogeneous Catalysis
,”
Energy Environ. Sci.
,
1
, pp.
484
486
.
21.
Sokolov
,
S.
,
Bell
,
D.
, and
Stein
,
A.
, 2003, “
Preparation and Characterization of Macroporous α-Alumina
,”
J. Am. Ceram. Soc.
,
86
, pp.
1481
1486
.
22.
Kašpar
,
J.
,
Fornasiero
,
P.
, and
Graziani
,
M.
, 1999, “
Use of CeO2-Based Oxides in the Three-Way Catalysis
,”
Catal. Today
,
50
, pp.
285
298
.
23.
Personal communication with Gregory Harris, a chemist from Alfa Aesar, on August 17, 2011.
24.
Koch
,
C.
,
Ovid’ko
,
I.
,
Seal
,
S.
, and
Veprek
,
S.
, 2007,
Structural Nanocrystalline Materials: Fundamentals and Applications
,
Cambridge University Press
,
Cambridge, UK
, pp.
93
133
.
You do not currently have access to this content.