This study describes the thermal modeling of a novel algal biofilm photobioreactor aimed at cultivating algae for biofuel production. The thermal model is developed to assess the photobioreactor’s thermal profile and evaporative water loss rate for a range of environmental parameters, including ambient air temperature, solar irradiation, relative humidity, and wind speed. First, a week-long simulation of the system has been performed using environmental data for Memphis, TN, on a typical week during the spring, summer, fall, and winter. Then, a sensitivity analysis was performed to assess the effect of each weather parameter on the temperature and evaporative loss rate of the photobioreactor. The range of the daily algae temperature variation was observed to be 12.2  °C, 13.2 °C, 11.7 °C, and 8.2 °C in the spring, summer, fall, and winter, respectively. Furthermore, without active cooling, the characteristic evaporative water loss from the system is approximately 6.0 L/m2 day, 7.3 L/m2 day, 3.4 L/m2 day, and 1.0 L/m2 day in the spring, summer, fall, and winter, respectively.

References

References
1.
Molina Grima
,
E.
,
Acien Fernandez
,
F.
,
Garcia Camacho
,
F.
, and
Chisti
,
Y.
, 1999, “
Photobioreactors: Light Regime, Mass Transfer, and Scaleup
,”
J. Biotechnol.
,
70
, pp.
231
247
.
2.
Suh
,
S.
, and
Lee
,
C.
, 2003, “
Photobioreactor Engineering: Design and Performance
,”
Biotechnol. Bioprocess Eng.
,
8
, pp.
313
321
.
3.
Ozkan
,
A.
, and
Berberoglu
,
H.
, 2010, “
Novel Biofilm Photobioreactor for Minimizing Energy and Water Requirements of Algae Cultivation
,”
ASME International Mechanical Congress and Exposition
,
>IMECE
2010-39621.
4.
Johnson
,
M.
, and
Wen
,
Z.
, 2009, “
Development of an Attached Microalgal Growth System for Biofuel Production
,”
Appl. Microbiol. Biotechnol.
,
85
(
3
), pp.
525
534
.
5.
Weiss
,
V.
,
Gromet-Elhanan
,
Z.
, and
Halmann
,
M.
, 1985, “
Batch and Continuous Culture Experiments on Nutrient Limitations and Temperature Effects in the Marine Alga Tetraselmis suecica
,”
Water Res.
,
19
(
2
), pp.
185
190
.
6.
Tian
,
X.
,
Liao
,
Q.
,
Zhu
,
X.
,
Wang
,
Y.
,
Zhang
,
P.
,
Li
,
J.
, and
Wang
,
H.
, 2010, “
Characteristics of a Biofilm Photobioreactor as Applied to Photo-Hydrogen Production
,”
Bioresour. Technol.
,
101
(
3
), pp.
977
983
.
7.
Gutiérrez
,
J.
,
Porta-Gándara
,
M.
, and
Fernández
,
J.
, 2008, “
Passive Temperature Solar Control of an Outdoor Photobioreactor
,”
Renewable Energy
,
33
(
8
), pp.
1892
1903
.
8.
Kalacheva
,
G. S.
,
Zhila
,
N. O.
,
Volova
,
T. G.
, and
Gladyshev
,
M. I.
, 2002, “
The Effect of Temperature on the Lipid Composition of the Green Alga Botryococcus
,”
Microbiology
,
71
(
3
), pp.
286
293
.
9.
Sierra
,
E.
,
Acién
,
F.
,
Fernández
,
J.
,
García
,
J.
,
González
,
C.
, and
Molina
,
E.
, 2008, “
Characterization of a Flat Plate Photobioreactor for the Production of Microalgae
,”
Chem. Eng. J.
,
138
(
1–3
), pp.
136
147
.
10.
Morita
,
M.
,
Watanabe
,
Y.
, and
Saiki
,
H.
, 2001, “
Evaluation of Photobioreactor Heat Balance for Predicting Changes in Culture Medium Temperature Due to Light Irradiation
,”
Biotechnol. Bioeng.
,
74
(
6
), pp.
466
475
.
11.
Li
,
S.
,
Willits
,
D.
,
Browdy
,
C.
,
Timmons
,
M.
, and
Losordo
,
T.
, 2009, “
Thermal Modeling of Greenhouse Aquaculture Raceway Systems
,”
Aquacultural Eng.
,
41
, pp.
1
13
.
12.
Mata
,
T. M.
,
Martins
,
A. A.
, and
Caetano
,
N. S.
, 2010, “
Microalgae for Biodiesel Production and Other Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
217
232
.
13.
Incropera
,
F.
,
Dewitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
A.
, 2007,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
John Wiley & Sons
,
Washington, DC
.
14.
Becker
,
E.
, 1994,
Microalgae Biotechnology and Microbiology
,
Cambridge University Press
,
Cambridge
.
15.
Bolton
,
J.
, and
Hall
,
D.
, 1991, “
The Maximum Efficiency of Photosynthesis
,”
Photochem. Photobiol.
,
53
(
4
), pp.
545
548
.
16.
Williams
,
D.
, 1991, “
A Comparison of Spectral Reflectance Properties at the Needle, Branch, and Canopy Level for Selected Conifer Species
,”
Remote Sens. Environ.
,
93
, pp.
35
79
.
17.
Gueymard
,
C.
, 2004, “
The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models
,”
Sol. Energy
,
76
(
4
), pp.
423
453
.
18.
Irvine
,
W. M.
, and
Pollack
,
J. B.
, 1968, “
Infrared Optical Properties of Water and Ice Spheres
,”
Icarus
,
8
, pp.
324
360
.
19.
Howell
,
J.
, and
Siegel
,
R.
, 2002,
Thermal Radiation Heat Transfer
,
4th ed.
,
Taylor & Francis
,
New York.
20.
Mills
,
A.
, 1999,
Heat Transfer,
2nd ed.
,
Prentice Hall, Upper Saddle River
,
NJ
.
21.
Mills
,
A.
, 2001,
Mass Transfer
,
2nd ed.
,
Prentice Hall, Upper Saddle River
,
NJ
.
22.
Moran
,
M.
, and
Shapiro
,
H.
, 2003,
Fundamentals of Engineering Thermodynamics
,
5th ed.
,
John Wiley & Sons
,
New York.
23.
Duffie
,
J.
, and
Beckman
,
W.
, 2006,
Solar Engineering of Thermal Processes
,
3rd ed.
,
John Wiley & Sons
,
Hoboken, NJ
.
24.
Berberoglu
,
H.
,
Pilon
,
L.
, and
Melis
,
A.
, 2008, “
Radiation Characteristics of Chlamydomonas reinhardtii CC125 and Its Truncated Chlorophyll Antenna Transformants tla1, tlaX and tla1-CW+
,”
Int. J. Hydrogen Energy
,
33
(
22
), pp.
6467
6483
.
25.
Wilcox
,
S.
, and
Marion
,
W.
, 2008, “
Users Manual for TMY3 Data Sets
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-581-43156.
You do not currently have access to this content.