Two methods often proposed for harnessing renewable energy, photovoltaics and solar thermal, both utilize the power of the sun. Each of these systems independently presents unique engineering challenges but when coupled together the challenge intensifies due to competing operating requirements. Recent research has demonstrated these hybrid systems for low-temperature applications but there exists limited studies at higher concentration ratios, and thus higher temperatures. What these studies have shown is that keeping the photovoltaic (PV) cell temperature low keeps the overall system efficiency relatively high but results in low efficiencies from the thermal system. This study presents a unique design strategy for a hybrid PV/thermal system that only has mild thermal coupling which can lead to enhanced efficiency. By creating a fluid filter that absorbs energy directly in the fluid below the band-gap and a PV cell with an active cooling strategy combined efficiencies greater than 38% can be achieved.

References

References
1.
Kazmerski
,
L.
, 2010,
“Best Research Cell Efficiencies,”
National Renewable Energy Laboratory
.
2.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
, 2005, “
Cooling of Photovoltaic Cells under Concentrated Illumination: a Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
, pp.
451
483
.
3.
Chow
,
T. T.
, 2009, “
A Review on Photovoltaic/Thermal Hybrid Solar Technology
,”
Appl. Energy
,
87
, pp.
365
379
.
4.
Singh
,
B.
, and
Othman
,
M. Y.
, 2009, “
A Review on Photovoltaic Thermal Collectors
,”
J. Renewable Sustainable Energy
,
1
, pp.
062702
.
5.
Hovel
,
H. J.
, 1977, “
Solar Cells for Terrestrial Applications
,”
Sol. Energy
,
19
(
3
), pp.
605
615
.
6.
Mbewe
,
D. J.
,
Card
,
H. C.
,
Card
,
D. C.
, 1985, “
A Model of Silicon Solar Cells for Concentrator Photovoltaic and Photovoltaic/Thermal System Design
, ”
Solar Energy
,”
35
(
3
), pp.
247
258
.
7.
Vorobiev
,
Y. V.
,
González-Hernández
,
J.
, and
Tribus
,
A.
, 2006, “
Analysis of Potential Conversion Efficiency of a Solar Hybrid System With High-Temperature Stage
,”
J. Sol. Energy Eng.
,
128
, pp.
258
260
.
8.
Yu
,
V.
,
González-Hernández
,
J.
,
Vorobiev
,
P.
, and
Bulat
,
L.
, 2006, “
Thermal-Photovoltaic Solar Hybrid System for Efficient Solar Energy Conversion
,”
Sol. Energy
,
80
, pp.
170
176
.
9.
Mittelman
,
G.
,
Kribus
,
A.
, and
Dayan
,
A.
, 2007, “
Solar Cooling with Concentrating Photovoltaic/Thermal (CPVT) Systems
,”
Energy Convers. Manage.
,
48
, pp.
2481
2490
.
10.
Coventry
,
J. S.
, 2005, “
Performance of a Concentrating Photovoltaic/Thermal Solar Collector
,”
Sol. Energy
,
78
, pp.
211
222
.
11.
Otanicar
,
T.
,
Chowdhury
,
I.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2010, “
Parametric Analysis of a Coupled Photovoltaic/Thermal Concentrating Solar Collector for Electricity Generation
,”
J. Appl. Phys.
,
108
, pp.
114907
.
12.
Chowdhury
,
I.
,
Otanicar
,
T.
,
Prasher
,
R.
,
Sherbeck
,
J.
,
Phelan
,
P. E.
, and
Burrell
,
M.
, 2010, “
Enhanced Efficiency in a Coupled Photovoltaic/Thermal Concentrating Solar Collector
,”
ASME Energy Sustainability Conference
,
Phoenix, AZ
, May 17–22.
13.
Chowdhury
,
I.
,
Otanicar
,
T.
,
Prasher
,
R.
,
Sherbeck
,
J.
,
Phelan
,
P. E.
, and
Burrell
,
M.
, 2010,
“Coupled Electro-Thermal Analysis of a Hybrid Solar Photovoltaic/Thermal System Operating at Elevated Temperatures,”
ASME International Heat Transfer Conference
, Vol.
14
,
Washington, DC
, Aug. 8–13.
14.
Imenes
,
A. G.
, and
Mills
,
D. R.
, 2004, “
Spectral Beam Splitting Technology for Increased Conversion Efficiency in Solar Concentrating Systems: A Review
,”
Sol. Energy Mater. Sol. Cells
,
84
, pp.
19
69
.
15.
Sabry
,
M.
,
Gottschalg
,
R.
,
Betts
,
T. R.
,
Shaltout
,
M. A. M.
,
Hassan
,
A. F.
,
Nicklway
,
M. M.
, and
Infield
,
D. G.
, 2002, “
Optical filtering of solar radiation to increase performance of concentrator systems
,”
Proceedings of the 29th IEEE Photovoltaic Specialists Conference
,
New Orleans, LA
.
16.
Chendo
,
M. A. C.
,
Jacobson
,
M. R.
, and
Osborn
,
D. E.
, 1987, “
Liquid and Thin-Film Filters for Hybrid Solar Energy Conversion Systems
,”
Sol. Wind Technol.
,
4
, pp.
131
138
.
17.
Prasher
,
R. S.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
, pp.
025901
.
18.
Prasher
,
R. S.
, and
Phelan
,
P. E.
, 2005,
“Modeling of Radiative and Optical Behavior of Nanofluids Based on Multiple and Dependent Scattering Theories”
, Paper No. IMECE2005-80302,
ASME IMECE
,
Orlando, FL
19.
Otanicar
,
T. P.
,
Taylor
,
R. A.
,
Phelan
,
P. E.
, and
Prasher
,
R.
, 2009,
“Impact of Size, Shape and Scattering Mode on the Optimal Solar Absorbing Nanofluid”
,
ASME 3rd International Conference on Energy Sustainability
,
Phoenix, AZ
.
20.
Otanicar
,
T. P.
,
Phelan
,
P. E.
,
Golden
,
J. S.
, 2009, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,
Sol. Energy
,”
83
, pp.
969
977
.
21.
Fan
,
J. C. C.
, 1986, “
Theoretical Temperature Dependence of Solar Cell Parameters
,”
Sol. Cells
,
17
, pp.
309
315
.
22.
Fan
,
J. C. C.
,
Tsaur
,
B.-Y.
, and
Palm
,
B. J.
, 1983, “
High Efficiency Crystalline Tandem Cells
,”
Proc. SPIE
,
407
, pp.
73
87
.
23.
Zondag
,
A.
,
de Vries
,
D. W.
,
van Helden
,
W. G. J.
,
van Zolingen
,
R. J. C.
, and
van Steenhoven
,
A. A.
, 2003, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
, pp.
253
269
.
24.
Duffie
,
J. A.
, and
Beckman
,
W. A.
, 1980,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
NY
.
You do not currently have access to this content.