A directly irradiated cavity solar reactor devoted to the thermal reduction of SnO2 particle-cloud is studied numerically by using the Monte Carlo method. The steady-state model solves the radiation and convection heat transfers in the semitransparent particle suspension and the chemical reaction. It was used to predict the temperature distribution and the reaction extent inside the cavity, as well as the theoretical thermochemical efficiency for different operational conditions. The simulations assume that the reactor contains a nonuniform size suspension of radiatively participating reacting SnO2 particles. The model takes into account the radiative characteristics of the particles, as well as the directional characteristics of the power distribution of the incoming concentrated solar energy. The particle concentration, the particle size, and the length of the reactor are varied. Results show that the particle temperature and the yield of the endothermic reaction are higher when the reactor is fed with a cloud of particles with average diameter of 20 μm. The maximal thermochemical efficiency reached is 10%, which corresponds to an optimal optical thickness of around 2.

References

References
1.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
G.
, and
Neveu
,
P.
, 2006,
“Screening of Water-Splitting Thermochemical Cycles Potentially Atractive for Hydrogen Production by Concentrated Solar Energy,”
Energy
,
31
, pp.
2805
2822
.
2.
Charvin
,
P.
,
Abanades
,
S.
,
Neveu
,
P.
,
Lemont
,
F.
, and
Flamant
,
G.
, 2008,
“Dynamic Modeling of a Volumetric Solar Reactor for Volatile Metal Oxide Reduction,”
Chem. Eng. Res. Design
,
86
, pp.
1216
1222
.
3.
Sibieude
,
F.
,
Ducarroir
,
M.
,
Tofighi
,
A.
, and
Ambriz
,
J.
, 1982,
“High Temperature Experiments with a Solar Furnace, The Decomposition of Fe3O4, Mn3O4, CdO,”
Int. J. Hydrogen Energy
,
7
, pp.
79
88
.
4.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murray
,
J.
, and
Tamaura
,
Y.
, 1998,
“Solar-Processed Metals as Clean Energy Carriers and Water-Splitters,”
Int. J. Hydrogen Energy
,
23
, pp.
767
774
.
5.
Abanades
,
S.
, and
Flamant
,
G.
, 2006,
“Thermochemical Hydrogen Production from a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides,”
Solar Energy
,
80
, pp.
1611
1623
.
6.
Charvin
,
P.
,
Abanades
,
S.
,
Lemort
,
F.
, and
Flamant
,
G.
, 2008,
“Analysis of Solar Chemical Processes for Hydrogen Production from Water Splitting Thermochemical Cycles,”
Energy Convers. Manage.
,
49
, pp.
1547
1556
.
7.
Abanades
,
S.
,
Charvin
,
P.
,
Lemont
,
F.
, and
Flamant
,
G.
, 2008,
“Novel Two-Step SnO2/SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen,”
Int. J. Hydrogen Energy
,
33
, pp.
6021
6030
.
8.
Schunk
,
L.
,
Lipiński
,
W.
, and
Steinfeld
,
A.
, 2009,
“Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO- Experimental Validation at 10 kW and Scale-Up to 1 MW,”
Chem. Eng. J.
,
150
, pp.
502
508
.
9.
Abanades
,
S.
,
Charvin
,
P.
, and
Flamant
,
G.
, 2007,
“Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation,”
Chem. Eng. Sci.
,
62
, pp.
6323
6333
.
10.
Valdés- Parada
,
F. J.
,
Romero-Paredes
,
H.
,
Espinosa-Paredes
,
G.
, 2011,
“Numerical Simulation of a Tubular Solar Reactor for Methane Cracking,”
Int. J. Hydrogen Energy
,
36
, pp.
3354
3363
.
11.
Modest
,
M.
,
Radiative Heat Transfer
(
Academic Press
,
San Diego
, 2003), Chap. 20.
12.
Bohren
,
C.
, and
Huffman
,
D.
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
New York
, 1983), Chap. 4.
13.
Riveros-Rosas
,
D.
,
Herrera-Vázquez
,
J.
,
Pérez-Rábago
,
C. A.
,
Arancibia-Bulnes
,
C. A.
,
Vázquez-Montiel
,
S.
,
Sánchez-González
,
M.
,
Granados-Agustín
,
F.
,
Jaramillo
,
O. A.
, and
Estrada
,
C. A.
, 2010,
“Optical Design of a High Radiative Flux Solar Furnace for Mexico,”
Solar Energy
,
84
, pp.
792
800
.
14.
Lipiński
,
W.
,
Thommen
,
D.
, and
Steinfeld
,
A.
, 2006,
“Unsteady Radiative Heat Transfer Within a Suspension of ZnO Particles Undergoing Thermal Dissociation,”
Chem. Eng. Sci.
,
61
, pp.
7029
7035
.
15.
Zhitomirsky
,
V. N.
,
Çetinörgü
,
E.
,
Boxman
,
R. L.
, and
Goldsmith
,
S.
, 2008,
“Properties of SnO2 Films Fabricated Using a Rectangular Filtered Vacuum Arc Plasma Source,”
Thin Solid Films
,
516
, pp.
5079
5086
.
16.
Belleci
,
C.
,
Camarca
,
C.
,
Conti
,
M.
,
Rotonda
,
La.
,
Piccini
,
G.
, and
Visentin
,
R.
, 1981,
“Optical and Electrical Properties of Tin-Dioxide Films,”
IL Nuovo Cimento
,
4
, pp.
397
407
.
17.
Levenspiel
,
O.
, and
Kunii
,
D.
,
Fluidization Engineering
(
Butterworth-Heinemann
,
London
, 1991), Chap. 11.
18.
Villafán-Vidales
,
H. I.
,
Arancibia-Bulnes
,
C. A.
,
Dehesa-Carrasco
,
U.
, and
Romero-Paredes
,
H.
, 2009,
“Monte Carlo Radiative Transfer Simulation of a Cavity Solar Reactor for the Reduction of Cerium Oxide,”
Int. J. Hydrogen Energy
,
34
, pp.
115
124
.
19.
Hulstrom
,
R.
,
Bird
,
R.
, and
Riordan
,
C.
, 1985,
“Spectral Solar Irradiance Datat Sets for Selected Terrestrial Conditions,”
Solar Cells
,
15
, pp.
365
391
.
You do not currently have access to this content.