The design, energy output, and cost effectiveness of solar projects using concentrators critically depend on the resource in direct normal irradiance (DNI). Many modeled DNI datasets now exist, and a recent preliminary study has shown some areas of serious disagreement in Europe. So far, no rigorous performance assessment has been undertaken for other parts of the world. The present contribution focuses on North Africa and bordering regions, which have great solar potential for power plants based on thermal or photovoltaic concentration systems. The mean monthly and annual performance of eight different modeled datasets providing DNI is analyzed here, with respect to measured radiation data at 14 sites, which are used as “ground-truth”. Relatively good results are generally obtained for sites in southern Europe. Serious problems, however, are found at various sites in North Africa or the Middle East. Most of these problems appear linked to inadequate aerosol optical depth data used by the models, and to the dust storms from the Sahara that regularly, and strongly, modify the aerosol regime. A method that can potentially correct these problems, or allow for model benchmarking based on a reference aerosol database, is proposed. The bankability of current datasets is questioned.

References

References
1.
Trieb
,
F.
,
Schillings
,
C.
,
O’Sullivan
,
M.
,
Pregger
,
T.
, and
Hoyer-Click
,
C.
, 2009, “
Global Potential of Concentrating Solar Power
,”
Proceedings of the SolarPACES Conference
,
Berlin, Germany
.
2.
Schillings
,
C.
,
Mannstein
,
H.
, and
Meyer
,
R.
, 2004, “
Operational Method for Deriving High Resolution Direct Normal Irradiance from Satellite Data
,”
Sol. Energy
,
76
, pp.
475
484
.
3.
Wahab
,
M. A.
,
El-Metwally
,
M.
,
Hassan
,
R.
,
Lefèvre
,
M.
,
Oumbe
,
A.
, and
Wald
,
L.
, 2010, “
Assessing Surface Solar Irradiance and its Long-Term Variations in the Northern Africa Desert Climate Using Meteosat Images
,”
Int. J. Rem. Sens.
31
, pp.
261
280
.
4.
Renné
,
D.
,
George
,
R.
,
Marion
,
B.
,
Perez
,
R.
,
Schillings
,
C.
,
Trieb
,
F.
,
Meyer
,
R.
,
Pereira
,
E. B.
,
Martins
,
F. R.
,
De Abreu
,
S. L.
,
Colle
,
S.
,
Vipradas
,
M.
,
Stackhouse
,
P.
,
Gueymard
,
C. A.
, and
Hamlin
,
T.
, 2005, “
Results of Solar Resource Assessments in the UNEP/SWERA Project
,”
Proceedings of the Solar World Congress
,
Orlando, FL
,
International Solar Energy Soc
.
5.
Ba
,
M.
,
Nicholson
,
S.
, and
Frouin
,
R.
, 2001, “
Satellite-Derived Surface Radiation Budget over the African Continent. Part II: Climatologies of the Various Components
,”
J. Climate
,
14
, pp.
60
76
.
6.
Breyer
,
C.
, and
Knies
,
G.
, 2009, “
Global Energy Supply Potential of Concentrating Solar Power
,”
Proceedings of the Solar PACES Conference
,
Berlin, Germany
.
7.
Suri
,
M.
,
et al.
, 2009, “
Comparison of Direct Normal Irradiation Maps for Europe
,”
Proceedings of the Solar PACES Conference
,
Berlin, Germany
.
8.
Hoyer-Click
,
C.
,
et al.
, 2009, “
MESoR—Management and Exploitation of Solar Resource Knowledge
,”
Proceedings of the SolarPACES Conference
,
Berlin, Germany
.
9.
Gueymard
,
C. A.
, 2011, “
Clear-Sky Solar Irradiance Predictions for Large-Scale Applications Using 18 Radiative Models: Improved Validation Methodology and Detailed Performance Analysis
,”
Sol. Energy
(in press).
10.
Gueymard
,
C. A.
, and
Wilcox
,
S. M.
, 2011, “
Assessment of Spatial and Temporal Variability in the U.S. Solar Resource from Radiometric Measurements and Predictions from Models Using Ground-Based or Satellite Data
,”
Sol. Energy
,
85
, pp.
1068
1084
.
11.
Gueymard
,
C. A.
, 2005, “
Importance of Atmospheric Turbidity and Associated Uncertainties in Solar Radiation and Luminous Efficacy Modelling
,”
Energy
30
, pp.
1603
1621
.
12.
Gueymard
C. A.
, 2003, “
Direct Solar Transmittance and Irradiance Predictions With Broadband Models. Pt. 2: Validation With High-Quality Measurements
,”
Sol. Energy
74
, pp.
381
395
. Corrigendum (2004): Sol. Energy 76, 515.
13.
Gueymard
,
C. A
, and
Myers
,
D. R.
, 2010, “
Solar Resource for Space and Terrestrial Applications
,” in
Solar Cells and Their Applications
,
2nd ed.
,
L.
Fraas
and
L.
Partain
, eds.,
Wiley
,
NY
.
14.
Cebecauer
,
T.
,
Suri
,
M.
, and
Perez
,
R.
, 2010, “
High Performance MSG Satellite Model for Operational Solar Energy Applications
,”
Proceedings of the Solar 2010 Conference
,
Phoenix, AZ
,
American Solar Energy Soc
.
15.
Perez
,
R.
,
Schlemmer
,
J.
,
Kivalov
,
S.
,
Hemker
,
C.
, and
Zelenka
,
A.
, 2010, “
Improving the Performance of Satellite-to-Irradiance Models Using The Satellite Infrared Sensors
,”
Proceedings of the Solar 2010 Conference
,
Phoenix, AZ
,
American Solar Energy Soc
.
16.
Gueymard
,
C. A.
, 2005, “
Interdisciplinary Applications of a Versatile Spectral Solar Irradiance Model: A Review
,”
Energy
30
, pp.
1551
1576
.
17.
Gueymard
,
C. A.
, 2005, “
SMARTS Code, Version 2.9.5 User’s Manual
,”
Solar Consulting Services
. Available from http://www.solarconsultingservices.com/SMARTS295_manual.pdfhttp://www.solarconsultingservices.com/SMARTS295_manual.pdf
18.
Shettle
,
E. P.
, 1984, “
Optical and Radiative Properties of a Desert Aerosol Model
,”
Proceedings of the International Radiation Symposium, Current Problems in Atmospheric Radiation
,
Perugia, Italy
,
Deepak Publ.
19.
Eck
,
T. F.
,
Ho;ben
,
B. N.
,
Reid
,
J. S.
,
Dubovik
,
O.
,
Smirnov
,
A.
, O’
Neill
,
N. T. O.
,
Slutsker
,
I.
, and
Kinne
,
S.
, “
Wavelength Dependence of the Optical Depth of Biomass Burning and Desert Dust Aerosols
,”
J. Geophys. Res.
104(D)
, pp.
31,333
31,349
, doi: 10.1029/1999JD900923 (1999).
20.
Tanré
,
D.
,
Kaufman
,
Y. J.
,
Holben
,
B. N.
,
Chatenet
,
B.
,
Karnieli
,
A.
,
Lavenu
,
F.
,
Blarel
,
L.
,
Dubovik
,
O.
,
Remer
,
L. A.
, and
Smirnov
,
A.
, “
Climatology of Dust Aerosol Size Distribution and Optical Properties Derived from Remotely Sensed Data in the Solar Spectrum
,”
J. Geophys. Res.
106(D)
, pp.
18,205
18,217
, doi: 10.1029/2000JD900663 (2001).
21.
Gueymard
,
C. A.
, 2008, “
REST2: High-performance Solar Radiation Model for Cloudless-Sky Irradiance, Illuminance, and Photosynthetically Active Radia-tion—Validation With a Benchmark Dataset
,”
Sol. Energy
82
, pp.
272
285
.
22.
Ologunorisa
,
T.
E.
and
Tamuno
,
T. T. T.
, 2003, “
Spatial and Seasonal Variations of Sandstorms Over Nigeria
,”
Theor. Appl. Climatol.
75
, pp.
55
63
.
23.
Antoine
,
D.
, and
Nobileau
,
D.
, “
Recent Increase of Saharan Dust Transport Over the Mediterranean Sea, as Revealed From Ocean Color Satellite (SeaWiFS) Observations
,”
J. Geophys. Res.
111(D)
, doi: (2006).
24.
Chiapello
,
I.
,
Moulin
,
C.
, and
Prospero
,
J. M.
, “
Understanding the Long-Term Variability of African Dust Transport Across the Atlantic as Recorded in Both Barbados Surface Concentrations and Large-Scale Total Ozone Mapping Spectrometer (TOMS) Optical Thickness
,”
J. Geophys. Res.
110(D)
, doi: (2005).
25.
Papayannis1
,
A.
,
Balis
,
D.
,
Amiridis
,
V.
,
Chourdakis
,
G.
,
Tsaknakis
,
G.
,
Zerefos
,
C.
,
Castanho
,
A. D. A.
,
Nickovic
,
S.
,
Kazadzis
,
S.
, and
Grabowski
,
J.
, 2005, “
Measurements of Saharan Dust Aerosols Over the Eastern Mediterranean Using Elastic Backscatter-Raman Lidar, Spectrophotometric and Satellite Observations in the Frame of the EARLINET Project
,”
Atmos. Chem. Phys.
5
, pp.
2065
2079
.
26.
Pandithurai
,
G.
,
Pinker
,
R. T.
,
Dubovik
,
O.
,
Holben
,
B. N.
, and
Aro
,
T. O.
, “
Remote Sensing of Aerosol Optical Characteristics in sub-sahel, West Africa
,”
J. Geophys. Res.
106(D)
, 28, pp.
347
356
.
27.
El-Wakil
,
S. A.
,
El Metwally
,
M.
, and
Gueymard
,
C.
, 2001, “
Atmospheric Turbidity of Urban and Desert Areas of the Nile Basin in the Aftermath of Mt. Pinatubo’s Eruption
,”
Theor. Appl. Climatol.
68
, pp.
89
108
.
28.
Pinker
,
R. T.
,
Liu
,
H.
,
Osborne
,
S. R
, and
Akoshile
,
C.
, 2010, “
Radiative Effects of Aerosols in Sub-Sahel Africa: Dust and Biomass Burning
,”
J. Geophys. Res.
115(D)
, doi: (2010).
29.
Pinker
,
R. T.
,
Pandithurai
,
G.
,
Holben
,
B. N.
,
Dubovik
,
O.
and
Aro
,
T. O.
, “
A Dust Outbreak Episode in Sub-Sahel West Africa
,”
J. Geophys. Res.
106(D)
, pp.
22,923
22,930
(2001).
30.
Gueymard
C. A.
, and
Thevenard
D.
, 2009, “
Monthly Average Clear-Sky Broadband Irradiance Database for World-wide Solar Heat Gain and Building Cooling Load Calculations
,”
Sol. Energy
,
83
, pp.
1998
2018
.
31.
Gueymard
,
C. A.
, and
George
,
R.
, “
Gridded Aerosol Data for Improved Direct Normal Irradiance Modeleling: The case of India
,”
Proceedings of the Solar 2011 Conference
,
Raleigh, NC
,
American Solar Energy Soc
.
32.
Gueymard
,
C. A
, and
Myers
,
D. R.
, 2008, “
Validation and Ranking Methodologies for Solar Radiation Models
,” in
Modeling Solar Radiation at the Earth’s Surface: Recent Advances
,
Badescu
,
V.
, ed.,
Springer
,
NY
, Chap. 20.
33.
Cebecauer
,
T.
, and
Suri
,
M.
, 2010, “
Accuracy Improvements of Satellite-Derived Solar Resource Based on GEMS Re-analysis Aerosols
,”
Proceedings of the SolarPACES Conference
,
Perpignan, France
.
34.
Chatterjee
A.
et al.
, “
A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-based Observations of Aerosol Optical Thickness
,”
J. Geopys. Res.
115(D)
, doi: (2010).
35.
Muneer
,
T.
,
Alnasser
,
W. E.
, and
Fairooz
,
F.
, 2007, “
The Insolation on Vertical Surface Having Different Directions in the Kingdom of Bahrain
,”
Desalination
209
, pp.
269
274
.
You do not currently have access to this content.