Solar thermal energy generation needs receiver technologies which can drive highly efficient turbines and decouple the collection of energy from its use by an economic storage technology. High-temperature solid particle receivers for solar tower systems with particle storage are one option. Important issues regarding high-temperature particle receivers are minimization of convective losses, no particle loss due to susceptibility to wind, and high efficiency also in part-load operation. A design approach facing these challenges is the face-down receiver using recirculation of particles. A screening performance analysis studying different recirculation patterns is presented. Using smart recirculation schemes, high receiver efficiencies can be maintained also at part-load operation (100% load ∼90%; 50% load ∼86%; 20% load ∼67%). Simulations of the face-down geometry yield total annual solar-to-electric efficiencies of 24% using a surround field. From the analyses, it can be concluded that solid particle receivers using smart recirculation patterns are a viable receiver option for storage and high-temperature high-efficiency turbine processes.

References

References
1.
Gintz
,
J. R.
, 1987, “
Closed-Cycle, High-Temperature Central Receiver Concept for Solar Electric Power
,”
Boeing Engineering and Construction
,
Seattle, Washington, Electric Power Research Institute
,
Palo Alto, CA
, Final Report ER-629.
2.
Vant-Hull
,
L. L.
,
Izygon
,
M. E.
, and
Imhof
,
A.
, 1999, “
Optimization of Central Receiver Fields to Interface With Applications Requiring High Flux Density Receivers
,”
9th International Symposium on Solar Thermal Concentrating Technologies 1998, [ J. Phys.
IV 9
,
Pr3
-65-Pr3-
70
(1999)].
3.
Falcone
,
P. K.
,
Noring
,
J. E.
, and
Hruby
,
J. M.
, 1985, “
Assessment of a Solid Particle Receiver for a High Temperature Solar Central Receiver System
,” Sandia National Laboratories, Report No. SAND85-8208.
4.
Hruby
,
J. M.
, 1986, “
A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications
,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-8211.
5.
Hruby
,
J.
,
Steeper
,
R.
,
Evans
,
G.
, and
Crowe
,
C.
, 1988, “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,”
J. Fluids Eng.
,
110
, pp.
172
181
.
6.
Evans
,
G.
,
Houf
,
W.
,
Greif
,
R.
, and
Crowe
,
C.
, 1987, “
Gas-Particle Flow Within a High Temperature Solar Cavity Receiver Including Radiation Heat Transfer
,”
J. Sol. Energy Eng.
,
109
, pp.
134
142
.
7.
Griffin
,
J. W.
,
Stahl
,
K. A.
, and
Pettit
,
R. B.
, 1986, “
Optical Properties of Solid Particle Receiver Materials: I. Angular Scattering and Extinction Characteristics of Norton Masterbeads ®
,”
Sol. Energy Mater.
,
14
, pp.
395
416
.
8.
Steinfeld
,
A.
,
Imhof
,
A.
, and
Mischler
,
D.
, 1992, “
Experimental Investigation of an Atmospheric-Open Cyclone Solar Reactor for Solid-Gas Thermochemical Reactions
,”
J. Sol. Energy Eng.
,
114
, pp.
171
174
.
9.
Z’Graggen
,
A.
,
Haueter
,
P.
,
Trommer
,
D.
,
Romero
,
M.
,
De Jesus
,
J. C.
, and
Steinfeld
,
A.
, 2006, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modelling
,”
Int. J. Hydrogen Energy
,
31
, pp.
797
811
.
10.
Klein
,
H. H.
,
Karni
,
J.
,
Ben-Zvi
,
R.
, and
Bertocchi
,
R.
, 2007, “
Heat Transfer in a Directly Irradiated Solar Receiver/Reactor for Solid-Gas Reactions
,”
Sol. Energy
,
81
(
10
), pp.
1227
1239
.
11.
Kim
,
K.
,
Siegel
,
N.
,
Kolb
,
G.
,
Rangaswamy
,
V.
, and
Moujaes
,
S. F.
, 2009, “
A Study of Solid Particle Flow Characterization in Solar Particle Receiver
,”
Sol. Energy
,
83
(
10
), pp.
1784
1793
.
12.
Siegel
,
N.
,
Ho
,
C.
,
Khalsa
,
S.
, and
Kolb
,
G.
, 2010, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
J. Sol. Energy Eng.
,
132
, p.
021008
.
13.
Ho
,
C.
,
Röger
,
M.
,
Khalsa
,
S.
,
Amsbeck
,
L.
,
Buck
,
R.
,
Siegel
,
N.
, and
Kolb
,
G.
, 2009,
Experimental Validation of Different Modeling Approaches for Solid Particle Receivers
, SolarPACES 2009, September
15
18
, Berlin, Germany, Proceedings of blarPACES 2009.
14.
Kiera
,
M.
, 1986, “
Beschreibung und Handhabung des Programmsystems HFLCAL
,” Interatom Report, IAS-BT-200000-75.
15.
Schwarzbözl
,
P.
,
The User’s Guide to HFLCAL
(
DLR, German Aerospace Center, Institute of Thermodynamics
, 2009).
16.
Pettit
R. B.
,
Vittitoe
C. N.
, and
Biggs
F.
, 1983, “
Simplified Calculational Procedure for Determining the Amount of Intercepted Sunlight in an Imaging Solar Concentrator
,”
J. Sol. Energy Eng.
,
105
, pp.
101
107
.
17.
Röger
,
M.
,
Pfänder
,
M.
, and
Buck
,
R.
, 2006, “
Multiple Air-Jet Window Cooling for High-Temperature Pressurized Volumetric Receivers: Testing, Evaluation, and Modeling
,”
J. Sol. Energy Eng.
,
128
(
3
), pp.
265
274
.
18.
Hottel
,
H. C.
, 1954, “
Radiant-Heat Transmission
,”
Heat Transmission
,
3rd ed.
,
W. H.
McAdams
, ed.,
McGraw-Hill Book Company
,
New York
, pp.
55
125
.
19.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
, 1967,
Radiative Transfer
,
McGraw-Hill Book Company
,
New York
.
20.
Gardon
,
R.
, 1961, “
A Review of Radiant Heat Transfer in Glass
,”
J. Am. Ceram. Soc.
,
44
(
7
), pp.
305
312
.
21.
Khalsa
,
S.
,
Christian
,
J.
,
Kolb
,
G.
,
Röger
,
M.
,
Amsbeck
,
L.
,
Ho
,
C.
,
Siegel
,
N.
, and
Moya
,
A
, 2011, “
CFD Simulation and Performance Analysis of Alternative Designs for High-Temperature Solid Particle Receivers
,”
Proceedings of ASME 2011, 5th International Conference on Energy Sustainability
,
ESFuelCell2010, August 7–10
,
Washington, DC
(to be published).
22.
Hruby
,
J.
,
Steeper
,
R.
,
Evans
,
G.
, and
Crowe
,
C.
, 1986. “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,” Sandia National Laboratories, Report No. SAND86-8211.
23.
Siegel
,
R.
,
Howell
,
J. R.
, and
Lohrengel
,
J.
, 1991,
Wärmeübertragung durch Strahlung
,
Springer Verlag
,
Berlin, Teil 2
.
24.
Bugge
,
J.
,
Kjaer
,
S.
, and
Blum
,
R.
, 2006, “
High-Efficiency Coal-Fired Power Plants Development and Perspectives
,”
Energy
,
31
, pp.
1437
1445
.
You do not currently have access to this content.