Current technologies of concentrated solar power plants (CSP) are under extensive industrial development but still suffer from lack of adapted thermal energy storage (TES) materials and systems. In the case of extended storage (some hours), thousands of tonnes of materials are concerned leading to high investment cost, high energy and GHG contents and major conflicts of use. In this paper, recycled industrial ceramics made by vitrification of asbestos containing wastes (ACW) are studied as candidates to be used as sensible TES material. The material presents no hazard, no environmental impact, good thermophysical properties (λ= 1.4 W m−1 K−1; Cp = 1025 J kg−1 K−1; ρ= 3100 kg m−3) and at very low investment cost. Thanks to the vitrification process of the wastes, the obtained ceramics is very stable up to 1200 °C and can be directly manufactured with the desired shape. The vitrified ACW can be used as TES material for all kinds of the CSP processes (from medium up to high concentration levels) with properties in the same range than other available materials but with lower cost and without conflict of use. The proposed approach leads also to sustainable TES allowing a pay back of the energy needed for the initial waste treatment. Furthermore, this new use of the matter can enhance the waste treatment industry instead of land fill disposal.

References

References
1.
ECOSTAR, European Concentrated Solar thermal Road-Mapping, (2004) SES6-CT-2003-502578.
2.
Kalogirou
,
S. A.
, 2004, ”
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
, pp.
231
295
.
3.
Fernandez-Garcia
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Perez
,
M.
, 2010, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1695
1721
.
4.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
, 2004, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
, pp.
883
893
.
5.
Fricker
,
H. W.
, 2004, “
Regenerative Thermal Storage in Atmospheric Air System Solar Power Plants
,”
Energy
,
29
, pp.
871
881
.
6.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lazaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
, 2010, “
State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modelization
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
31
55
.
7.
Medrano
,
M.
,
Gil
,
A.
,
Martorell
,
I.
,
Potau
,
X.
, and
Cabeza
,
L.F.
, 2010, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 2- Case Studies
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
56
72
.
8.
Laing
,
D.
,
Steinmann
,
W. D.
,
Tamme
,
R.
, and
Rishter
,
C.
, 2006, “
Solid media thermal storage for parabolic trough power plants
,”
Sol. Energy
,
80
, pp.
1283
1289
.
9.
Warerkar
,
S.
,
Schmitz
,
S.
,
Goettsche
,
J.
,
Hoffschmidt
,
B.
,
ReiBel
,
M.
, and
Tamme
,
R.
, 2009, “
Air-Sand Heat Exchanger for High-Temperature Storage
,”
Proceedings of Energy Sustainability Conference ES2009
,
San Francisco, CA
, July
19
23
.
10.
Pincemin
,
S.
,
Olives
,
R.
,
Py
,
X.
, and
Christ
,
M.
, 2008, “
Highly Conductive Composites Made of Phase Change Materials and Graphite for Thermal Storage
,”
Sol. Energy Mater. Sol. Cells
,
92
, pp.
603
613
.
11.
Laing
,
D.
,
Bahl
,
C.
, and
FiB
,
M.
, 2010, “
Commissioning of a Thermal Energy Storage System for Direct Steam Generation
,”
Proceeding SolarPACES 2010
,
Perpignan, France
Sep.
21
24
.
12.
Kenisarin
,
M. M.
, 2010, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
955
970
.
13.
Fernandez
,
A.I.
,
Martinez
,
M.
,
Segarra
,
M.
,
Martorell
,
I.
, and
Cabeza
,
L.F.
, 2010, “
Selection of Materials With Potential in Sensible Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
94
, pp.
1723
1729
.
14.
Singh
,
H.
,
Saini
,
R. P.
, and
Saini
,
J. S.
, 2010, “
A Review on Packed Bed Solar Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
1059
1069
.
15.
Lechon
,
Y.
,
De la Rua
,
C.
, and
Saez
,
R.
, 2006, “
Life Cycle Environmental Impacts of Electricity Production by Solar Thermal Technology in Spain
,”
SolarPACES 2006 Proceedings
,
Seville Spain
, June
20
23
.
16.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
, 2002, “
Development of a Molten Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
J. Sol. Energy Eng.
,
124
, pp.
153
159
.
17.
Gualtieri
,
A.F.
,
Lassinantti Gualtieri
,
M.
, and
Tonelli
,
M.
, 2008, “
In situ ESEM Study of the Thermal Decomposition of Chrysotile Asbestos in View of Safe Recycling of the Transformation Product
,”
J. Hazard. Mater.
,
156
, pp.
260
266
.
18.
Gomez
,
E.
,
Amutha Rani
,
D.
,
Cheeseman
,
C. R.
,
Deegan
,
D.
,
Wise
,
M.
, and
Boccaccini
,
A. R.
, 2009, “
Thermal Plasma Technology for the Treatment of Wastes: A Critical Review
,”
J. Hazard. Mater.
,
161
, pp.
614
626
.
19.
Leonelli
,
C.
,
Veronesi
,
P.
,
Boccaccini
,
D. N.
,
Rivasi
,
M. R.
,
Barbieri
,
L.
,
Andreola
,
F.
,
Lancellotti
,
I.
,
Rabitti
,
D.
, and
Pellacani
,
G. C.
, 2006, “
Microwave Thermal Inertisation of Asbestos Containing Waste and Its Recycling in Traditional Ceramics
,”
J. Hazard. Mater.
,
B135
, pp.
149
155
.
20.
Virta
,
R.
, 1983, “
Worlwide Asbestos Supply and Consumption Trends from 1900 to 2000
,” US Geological Survey, Open File Report No. 03-83.
22.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
7
(
6
), pp.
1564
1583
.
23.
Buttner
,
R.
,
Zimanowski
,
B.
,
Blumm
,
J.
, and
Hagemann
,
L.
, 1998, “
Thermal Conductivity of a Volcanic Rock Material (olivine–melilitite) in the Temperature Range between 288 and 1470 K
,”
J. Volcanol. Geotherm. Res.
,
80
, pp.
293
302
.
24.
Fabrichnaya
,
O. B.
, and
Nerad
,
I.
, 2000, “
Thermodynamic Properties of Liquid Phase in the CaO.SiO2-CaO.Al2O3.2SiO2-2CaO.Al2O3.SiO2 System
,”
J. Eur. Ceram. Soc.
,
20
, pp.
505
515
.
25.
Clauser
,
C.
, and
Huenges
,
E.
, 1995, “
Thermal Conductivity of Rocks and Minerals
,”
AGU Handbook of Physical Constant
,
T.
Ahrens
, ed.,
Am. Geophys. Union
,
Washington, DC, New York
.
26.
Horai
,
K.
, and
Simmons
,
G.
, 1969, “
Thermal Conductivity of Rock-Forming Minerals
,”
Earth Planet. Sci. Lett.
,
6
, pp.
359
368
.
You do not currently have access to this content.