High temperature thermal storage technologies that can be easily integrated into future concentrated solar power plants are a key factor for increasing the market potential of solar power production. Storing thermal energy by reversible gas–solid reactions has the potential of achieving high storage densities while being adjustable to various plant configurations. In this paper the Ca(OH)2/CaO reaction system is investigated theoretically. It can achieve storage densities above 300 kWh/m3 while operating in a temperature range between 400 and 600°C. Reactor concepts with indirect and direct heat transfer are being evaluated. The low thermal conductivity of the fixed bed of solid reactants turned out to considerably limit the performance of a storage tank with indirect heat input through the reactor walls. A one-dimensional model for the storage reactor is established and solved with the Finite Element Method. The reactor concept with direct heat transfer by flowing the gaseous reactant plus additional inert gas through the solid reactants did not show any limitation due to heat transfer. If reaction kinetics are fast enough, the reactor performance in case of the Ca(OH)2/CaO reaction system is limited by the thermal capacity of the gaseous stream to take-up heat of reaction. However, to limit pressure drop and the according losses for compression of the gas stream, the size of the storage system is restricted in a fixed bed configuration.

References

1.
Lovegrove
,
K.
,
Luzzi
,
A.
,
Soldiani
,
I.
, and
Kreetz
,
H.
, 2004, “
Developing Ammonia Based Thermochemical Energy Storage for Dish Power Plants
,”
Sol. Energy
,
76
(
1–3
), pp.
331
337
.
2.
Fedders
,
H.
, and
Höhlein
,
B.
, 1982, “
Operating a Pilot Plant Circuit for Energy Transport With Hydrogen-Rich Gas
,”
Int. J. Hydr. Energy
,
7
(
10
), pp.
793
800
.
3.
Garg
,
H. P.
,
Mullick
,
S. C.
, and
Bhargava
,
A. K.
, 1985,
Solar Thermal Energy Storage
,
D. Reidel Publishing Company
, pp.
292
427
.
4.
Schaube
,
F.
,
Wörner
,
A.
, and
Tamme
,
R.
, 2010, Private Communication.
5.
Matsuda
,
H.
,
Ishizu
,
T.
,
Lee
,
S. K.
, and
Hasatani
,
M.
, 1985, “
Kinetic Study of Ca(OH)2/CaO Reversible Thermochemical Reaction for Thermal Energy Storage by Means of Chemical Reaction
,”
Kagaku Kogaku Ronbunshu
,
11
(
5
), pp.
542
548
.
6.
Samms
,
J. A. C.
, and
Evans
,
B. E.
, 1968, “
Thermal Dissociation of Ca(OH)2 at Elevated Pressures
,”
J. Appl. Chem.
,
18
, pp.
5
8
.
7.
Halstead
,
P. E.
, and
Moore
,
A. E.
, 1957, “
The Thermal Dissociation of Calcium Hydroxide
,”
J. Chem. Soc.
, pp.
3873
3875
.
8.
Ogura
,
H.
,
Yamamoto
,
T.
,
Kage
,
H.
,
Matsuno
,
Y.
, and
Mujumdar
,
A. S.
, 2002, “
Effects of Heat Exchange Condition on Hot Air Production by a Chemical Heat Pump Dryer Using CaO/H2O/Ca(OH)2 Reaction
,”
Chem. Eng. J.
,
86
(
1–2
), pp.
3
10
.
9.
Bauerle
,
G.
,
Chung
,
D. K.
,
Ervin
,
G.
,
Hajela
,
G. P.
,
Guon
,
J.
,
Springer
,
T. H.
, and
Rosemary
,
J.
, 1976, “
Storage of Solar Energy by Inorganic Oxides/Hydroxides
,”
Sharing the Sun: Solar technology in the seventies; Proceedings of the Joint Conference, Cape Canaveral, Fla: American Section of the International Solar Energy Society
,
Winnipeg, Canada
, August 15–20,
8
, pp.
192
218
.
10.
Darkwa
,
K.
, 1998, “
Thermochemical Energy Storage in Inorganic Oxides: An Experimental Evaluation
,”
Appl. Therm. Eng.
,
18
(
6
), pp.
387
400
.
11.
Fujii
,
I.
,
Tsuchiya
,
K.
,
Higano
,
M.
, and
Yamada
,
J.
, 1985, “
Studies of an Energy Storage System by Use of the Reversible Chemical Reaction: CaO +H2O - Ca(OH)2
,”
Sol. Energy
,
34
(
4/5
), pp.
367
377
.
12.
Azpiazu
,
M. N.
,
Morquillas
,
J. M.
, and
Vazquez
,
A.
, 2003, “
Heat Recovery From a Thermal Energy Storage Based on the Ca(OH)2/CaO Cycle
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
733
741
.
13.
Ogura
,
H.
,
Miyazaki
,
M.
,
Matsuda
,
H.
,
Hasatani
,
M.
,
Yanadori
,
M.
, and
Hiramatsu
,
M.
, 1991, “
Experimental Study on Heat Transfer Enhancement of the Solid Reactant Particle Bed in a Chemical Heat Pump Using Ca(OH)2/CaO Reaction
,”
Kagaku Kogaku Ronbunshu
,
17
(
5
), pp.
916
923
.
14.
Mar
,
R.
, 1980, “
The Application of Reversible Chemical Reactions to Solar Thermal Energy Systems
,”
Solar Materials Science
,
L. E.
Murr
, ed.,
Academic
,
New York
.
15.
Fujii
,
I.
,
Ishino
,
M.
,
Akiyama
,
S.
,
Murthy
,
M. S.
, and
Rajanandam
,
K. S.
, 1994, “
Behavior of Ca(OH)2/CaO Pellet Under Dehydration and Hydration
,”
Sol. Energy
,
53
(
4
), pp.
329
341
.
16.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
Springer
,
New York
.
17.
Darkwa
,
K.
,
Ianakiev
,
A.
, and
O’Callaghan
,
P. W.
, 2006, “
Modelling and Simulation of Adsorption Process in a Fluidised Bed Thermochemical Energy Reactor
,”
Appl. Therm. Eng.
,
26
(
8–9
), pp.
838
845
.
18.
Ismail
,
K. A. R.
, and
Stuginsky
,
R.
, 1999, “
A Parametric Study on Possible Fixed Bed Models for PCM and Sensible Heat Storage
,”
Appl. Therm. Eng.
,
19
(
7
), pp.
757
788
.
19.
Joppich
,
F.
, 2011, “
Strömungsreaktormodell für die Wasserstoffbeladung eines Metallhydridspeichers in Fahrzeugen
,” Ph.D. thesis, University of Stuttgart, Germany. Private Communication, pp.
704
714
.
20.
Lide
,
D. R.
, 1985, “
JANAF Thermochemical Tables, 3rd ed.
,”
J. Phys. Chem. Ref. Data, 14
(Suppl.
1
), pp.
704
714
.
21.
Gnielinski
,
V.
, 2006, “
Wärmeübertragung Partikel-Fluid in durchströmten Haufwerken, Abschnitt Gj
,”
VDI-Wärmeatlas
, 10th ed., Verein Deutscher Ingenieure, ed.,
Springer-Verlag Berlin Heidelberg
.
You do not currently have access to this content.