Modeling the mineralization of an organic pollutant was studied using a slurry of TiO2 powder. 2-4 dichlorophenol was chosen as the target molecule. In a first stage, a study was carried out, on the basis of a semi-empirical approach in order to define the optimal concentration of the catalyst. In a second stage, a series of photocatalytic mineralization was performed with a laboratory set-up using an artificial UV source. The parameters involved in the kinetics of mineralization were identified by a comparison of results obtained by simulations and experiments at constant but different levels of irradiation. In a third stage, the robustness and suitability of the model were tested with experiments carried out with an experimental solar set-up with different dimensions. No supplementary adjustment of parameters was needed to simulate the experiments performed under unsteady irradiation. Finally, the model is used to illustrate the great variation in treatment capability of a solar photocatalytic process depending on the weather conditions and, more particularly, the seasonal variations in UV irradiation.

References

References
1.
Blanco Galvez
,
J.
, and
Malato Rodriguez
,
S.
, 2003,
Solar Detoxification
,
Unesco Publishing
,
Paris
.
2.
Andreozzi
,
R.
,
Caprio
,
V.
,
Insola
,
A.
, and
Martota
,
R.
, 1999, “
Advanced Oxidation Processes (AOP) for Water Purification and Recovery
,”
Catal. Today
,
53
, pp.
51
59
.
3.
Esplugas
,
S.
,
Jiménez
,
J.
,
Contreras
,
S.
,
Pascual
,
E.
, and
Rodriguez
,
M.
, 2002, “
Comparison of Different Advanced Oxidation Processes for Phenol Degradation
,”
Water Res.
,
36
, pp.
1034
1042
.
4.
Robert
,
D.
, and
Malato
,
S.
, 2002, “
Solar Photocatalysis: A Clean Process for Water Detoxification
,”
Sci. Total Environ.
,
29
, pp.
85
97
.
5.
Malato
,
S.
,
Fernández-Ibáñez
,
P.
,
Maldonado
,
M. I.
,
Blanco
,
J.
, and
Gernjak
,
W.
, 2009, “
Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends
,”
Catal. Today
,
147
, pp.
1
59
.
6.
Alfano
,
O. M.
,
Bahnemann
,
D.
,
Cassano
,
A. E.
,
Dillert
,
R.
, and
Goslich
,
R.
, 2000, “
Photocatalysis in Water Environments Using Artificial and Solar Light
,”
Catal. Today
,
58
, pp.
199
230
.
7.
Li Puma
,
G.
, and
Yue
,
P. O.
, 1998, “
A Laminar Falling Film Slurry Photocatalytic Reactor. Part I—Model Development
,”
Chem. Eng. Sci.
,
53
, pp.
2293
3006
.
8.
Mills
,
A.
,
Wang
,
J.
, and
Ollis
,
D. F.
, 2006, “
Dependence of the Kinetics of Liquid-Phase Photocatalyzed Reactions on Oxygen Concentration and Light Intensity
,”
J. Catalysis
,
243
, pp.
1
6
.
9.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
,
Fernandez
,
P.
,
Caceres
,
J.
, and
Trincado
,
P.
, 2000, “
Solar Photocatalytic Mineralization of Commercial Pesticides: Acrinathrin
,”
Chemopshere
47
, pp.
235
240
.
10.
Guillard
,
C.
,
Disdier
,
J.
, and
Monnet
,
C.
, 2003, “
Solar Efficiency of a New Deposited Titania Photocatalyst: Chlorophenol, Pesticide, and Dye Removal Applications
,”
Appl. Catal., B
,
46
, pp.
319
332
.
11.
Goetz
,
V.
,
Cambon
,
J. P.
,
Sacco
,
D.
, and
Plantard
,
G.
, 2009, “
Modeling Aqueous Heterogeneous Photocatalytic Degradation of Organic Pollutants With Immobilized TiO2
,”
Chem. Eng. Process.
,
48
, pp.
532
537
.
12.
Fernández
,
P.
,
Blanco
,
J.
,
Sichel
,
C.
, and
Malato
,
S.
, 2005, “
Water Disinfection by Solar Photocatalysis Using Compound Parabolic Collectors
,”
Catal. Today
,
101
(
3–4
), pp.
345
352
.
13.
Gumy
,
D.
,
Rincon
,
A. G.
,
Hajdu
,
R.
, and
Pulgarin
,
C.
, 2006, “
Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed TiO2 Catalysts Study
,”
Sol. Energy
,
80
(
10
), pp.
1376
1381
.
14.
Oyama
,
T.
,
Aoshima
,
A.
,
Horikoshi
,
S.
,
Hidaka
,
H.
,
Zhao
,
J.
, and
Serpone
,
N.
, 2004, “
Solar Photocatalysis, Photodegradation of a Commercial Detergent in Aqueous TiO2 Dispersions Under Sunlight Irradiation
,”
Sol. Energy
,
77
, pp.
525
532
.
15.
Minero
,
C.
, and
Vione
,
D.
, 2006, “
A Quantitative Evaluation of the Photocatalytic Performance of TiO2 Slurries
,”
Appl. Catal., B
,
67
, pp.
257
269
.
16.
Herrmann
,
J. M.
, 1999, “
Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants
,”
Catal. Today
,
53
, pp.
115
129
.
17.
Cassano
,
A. E.
, and
Alfano
,
O. E.
, 2000, “
Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors
,”
Catal. Today
,
58
, pp.
167
197
.
18.
Vione
,
D.
,
Minero
,
C.
,
Maurino
,
V.
,
Carlotti
,
M. E.
, and
Picatonotto
,
T.
, 2005, “
Degradation of Phenol and Benzoic Acid in the Presence of a TiO2-Based Heterogeneous Photocatalyst
,”
Appl. Catal., B
,
58
, pp.
79
88
.
19.
Al Momani
,
F.
,
Sans
,
C.
, and
Esplugas
,
S.
, 2004, “
A Comparative Study of the Advanced Oxidation of 2,4-Dichlorophenol
,”
J. Hazard. Mater.
,
107
, pp.
123
129
.
20.
Bayarri
,
B.
,
Gimenez
,
J.
,
Curco
,
D.
, and
Esplugas
,
S.
, 2005, “
Photocatalytic Degradation of 2,4-Dichlorophenol by TiO2/UV: Kinetics, Actinometries and Models
,”
Catal. Today
,
101
, pp.
227
236
.
21.
Serpone
,
N.
, and
Pelizzetti
,
E.
, 1989,
Photocatalysis, Fundamentals and Applications
,
Wiley
,
New-York
.
22.
Schiavello
,
M.
, 1988,
Photocatalysis and Environment
,
Kluwer Academic Publishers
,
Dordrecht, Germany
.
23.
Malato
,
S.
,
Blanco
,
J.
,
Vidal
,
A.
, and
Richter
,
C.
, 2002, “
Photocatalysis With Solar Energy at a Pilot-Plant Scale: An Overview
,”
Appl. Catal.
,
37
, pp.
1
15
.
You do not currently have access to this content.