This paper deals with a simplified model of radiative heat transfer in building enclosures with low emissivity walls. The approach is based on an existing simplified model, well known and used in building multizone simulation codes, for the long wave exchanges in building enclosures. This method is simply extended to the case of a cavity including a very low emissivity wall, and it is shown that the obtained formalism is similar to the one used in the case of the based model, convenient for enclosures with only black walls (blackbody assumption). The proposed model has been integrated into a building simulation code and is based on simple examples; it is shown that intermediate results between the imprecise initial simple model and the more precise detailed model, the net-radiosity method, can be obtained. Finally, an application of the model is made for an existing experimental test cell including a radiant barrier insulation product, well used in Reunion Island for thermal insulation of roofs. With an efficacy based on the very low emissivity of their surfaces and the consequent decrease in radiative heat transfer through the wall in which they are included, the proposed simplified model leads to results very close to those of the reference method, the net-radiosity method.

1.
Allard
,
F.
,
Inard
,
C.
, and
Roldan
,
A.
, 1986, “
Etude comparative de différentes méthodes de modélisation des échanges radiatifs de courtes et grandes longueurs d’onde dans une cellule d’habitation
,”
Annales de l’I.T.B.T.P.
,
442
, pp.
1
60
.
2.
Boyer
,
H.
,
Garde
,
F.
,
Gatina
,
J. C.
, and
Brau
,
J.
, 1998, “
A Multimodel Approach to Building Thermal Simulation for Design and Research Purposes
,”
Energy Build.
0378-7788,
28
(
1
), pp.
71
79
.
3.
Caccavelli
,
D.
, 1988, “
Modélisation du comportement thermique des bâtiments multizones: Adaptation à un processus de conception
,” Ph.D. thesis, Institut National des Sciences Appliquées de Lyon, Lyon, France.
4.
Clarke
,
J. A.
, 1985,
Energy Simulation in Building Design
,
Bristol
.
5.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
3rd ed.
,
Wiley
,
New York
, p.
801
.
6.
Siegel
,
R.
, and
Howell
,
J. R.
, 1981,
Thermal Radiation Heat Transfer
,
McGraw-Hill
,
New York
.
7.
Brau
,
J.
,
Roux
,
J. J.
, and
Krauss
,
G.
, 1992,
Cahier des Algorithmes du Logiciel CODYBA
,
AFME
,
Paris
, p.
59
.
8.
Miranville
,
F.
,
Boyer
,
H.
,
Mara
,
T.
, and
Garde
,
F.
, 2003, “
On the Thermal Behavior of Roof-Mounted Radiant Barriers Under Tropical and Humid Climatic Conditions
,”
Energy Build.
0378-7788,
35
, pp.
997
1008
.
9.
Al-Asmar
,
H. R.
,
Jones
,
B. W.
, and
Matteson
,
D. K.
, 1996, “
Experimental Evaluation of Attic Radiant Barriers (RP-577)
,”
ASHRAE Trans.
0001-2505,
102
(
1
), pp.
297
306
.
10.
Desjarlais
,
A. O.
, and
Yarbrough
,
D. W.
, 1991, “
Prediction of the Thermal Performance of Single and Multi-Airspace Reflective Insulation Materials
,”
Insulation Materials: Testing and Applications
,
R. S.
Graves
and
D. C.
Wysocki
, eds.,
American Society of Testing Materials
,
Philadelphia
, Vol.
2
, pp.
24
43
.
11.
Fairey
,
P.
, 1982, “
Effects of Infrared Radiation Barriers on the Effective Thermal Resistance of Building Envelopes
,”
ASHRAE/DOE Conference of Thermal Performance of the Exterior Envelopes of Buildings II
, Las Vegas,
American Society of Heating, Refrigering and Air-Conditioning Engineers
,
Atlanta
, pp.
859
875
.
12.
Hollingsworth
,
M.
, Jr.
, 1983, “
Experimental Determination of the Thermal Resistance of Reflective Insulations
,”
ASHRAE Trans.
0001-2505,
89
, Part
1B
, pp.
568
578
.
13.
Levins
,
W. P.
, and
Hall
,
J. A.
, 1990, “
Measured Effects of Dust on the Performance of Radiant Barriers Installed on Top of Attic Insulation
,”
ASHRAE Trans.
0001-2505,
96
(
2
), pp.
253
260
.
14.
Medina
,
M. A.
,
O’Neal
,
D. L.
, and
Turner
,
W. D.
, 1992, “
Effect of Attic Ventilation on the Performance of Radiant Barriers
,”
ASME J. Sol. Energy Eng.
0199-6231,
114
, pp.
234
239
.
15.
Medina
,
M. A.
, 2000, “
On the Performance of Radiant Barriers in Combination With Different Attic Insulation Levels
,”
Energy Build.
0378-7788,
33
(
1
), pp.
31
40
.
16.
Noboa
,
H.
,
O’Neal
,
D.
, and
Turner
,
W.
, 1994, “
A Model of the Effect of Dust on the Emissivity of Radiant Barriers
,”
ASHRAE Trans.
0001-2505,
100
(
2
), pp.
23
30
.
17.
O’Neal
,
D. L.
, and
Winiarski
,
D. W.
, 1996, “
A Quasi-Steady-State Model of Attic Heat Transfer With Radiant Barriers
,”
Energy Build.
0378-7788,
24
(
3
), pp.
183
194
.
18.
Miranville
,
F.
,
Boyer
,
H.
,
Lauret
,
P.
, and
Lucas
,
F.
, 2008, “
A Combined Approach for Determining the Thermal Performance of Radiant Barriers Under Field Conditions
,”
Sol. Energy
0038-092X,
82
, pp.
399
410
.
19.
Medina
,
M. A.
, 1998, “
A Transient Heat and Mass Transfer Model of Residential Attics Used to Simulate Radiant Barrier Retrofits, Part I
,”
ASME J. Sol. Energy Eng.
0199-6231,
120
(
1
), pp.
32
38
.
20.
Medina
,
M. A.
, 1998, “
A Transient Heat and Mass Transfer Model of Residential Attics Used to Simulate Radiant Barrier Retrofits, Part II
,”
ASME J. Sol. Energy Eng.
0199-6231,
120
(
1
), pp.
39
44
.
21.
Fauconnier
,
R.
,
Guillemard
,
P.
, and
Grelat
,
A.
, 1986, “
Théories et methods de calcul. Algorithmes Bilbo et bilga
,” Transferts thermiques-Mecanique des fluides anisothermes.
22.
Taine
,
J.
, and
Petit
,
J. -P.
, 1995,
Transferts Thermiques
,
Dunod
,
Paris
, p.
422
.
23.
Gatina
,
J. C.
,
Hervé
,
P.
, and
Leveau
,
J.
, 1982, “
Habitat et climat à La Réunion
,”
Séminaire du mois de juin 1982
, La Réunion, p.
84
.
24.
Roldan
,
A.
, 1985, “
Etude thermique et aéraulique des enveloppes de bâtiment. Influence des couplages intérieurs et du multizonage
,” Ph.D. thesis, INSA de Lyon, Lyon, France, p.
310
.
25.
Mickael
,
F.
, 2003,
Modest. Radiative Heat Transfer
,
Academic
,
New York
.
26.
Wolosyn
,
M.
, 1999, “
Modélisation hygro-thermo-aéraulique des bâtiments multizones. Proposition d’une stratégie de résolution du système couple
,” Ph.D. thesis, INSA de Lyon, Lyon, France.
You do not currently have access to this content.