This article reports the fabrication of ordered arrays of ZnO nanorods and TiO2 nanotubules by using a simple solution-based method and the application of these arrays as the working electrodes in dye-sensitized solar cells (DSCs) with an aim of offering superior electron transport conduits than in the conventional nanocrystalline nanoparticle films. The faster charge transport and lower recombination properties of one-dimensional (1D) nanostructure array electrodes as compared with those of the nanoparticle one observed and proved that such arrays of 1D nanostructure are the more promising electrode for DSCs in the future.

1.
O’Regan
,
B.
, and
Grätzel
,
M.
, 1991, “
A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,”
Nature (London)
0028-0836,
353
(
6346
), pp.
737
740
.
2.
Hagfeldt
,
A.
, and
Grätzel
,
M.
, 2000, “
Molecular Photovoltaics
,”
Acc. Chem. Res.
0001-4842,
33
(
5
), pp.
269
277
.
3.
Kopidakis
,
N.
,
Schiff
,
E. A.
,
Park
,
N. -G.
,
van de Lagemaat
,
J.
, and
Frank
,
A. J.
, 2000, “
Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2
,”
J. Phys. Chem. B
1089-5647,
104
(
16
), pp.
3930
3936
.
4.
van de Lagemaat
,
J.
,
Park
,
N. -G.
, and
Frank
,
A. J.
, 2000, “
Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques
,”
J. Phys. Chem. B
1089-5647,
104
(
9
), pp.
2044
2052
.
5.
Solbrand
,
A.
,
Lindström
,
A.
,
Rensmo
,
H.
,
Hagfeldt
,
A.
, and
Lindquist
,
S. E.
, 1997, “
Electron Transport in the Nanostructured TiO2-Electrolyte System Studied With Time-Resolved Photocurrents
,”
J. Phys. Chem. B
1089-5647,
101
(
14
), pp.
2514
2518
.
6.
Tirosh
,
S.
,
Dittrich
,
T.
,
Ofir
,
A.
,
Grinis
,
L.
, and
Zaban
,
A.
, 2006, “
Influence of Ordering in Porous TiO2 Layers on Electron Diffusion
,”
J. Phys. Chem. B
1089-5647,
110
(
33
), pp.
16165
16168
.
7.
Savenije
,
T. J.
,
de Haas
,
M. P.
, and
Warman
,
J. M.
, 1999, “
The Yield and Mobility of Charge Carriers in Smooth and Nanoporous TiO2 Films
,”
Z. Phys. Chem.
0942-9352,
212
(
2
), pp.
201
206
.
8.
Schlichthörl
,
G.
,
Park
,
N. G.
, and
Frank
,
A. J.
, 1999, “
Estimation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells
,”
Z. Phys. Chem.
0942-9352,
212
(
1
), pp.
45
50
.
9.
Duffy
,
N. W.
,
Peter
,
L. M.
, and
Wijayantha
,
K. G. U.
, 2000, “
Characterisation of Electron Transport and Back Reaction in Dye-Sensitised Nanocrystalline Solar Cells by Small Amplitude Laser Pulse Excitation
,”
Electrochem. Commun.
1388-2481,
2
(
4
), pp.
262
266
.
10.
Nelson
,
J.
,
Haque
,
S. A.
,
Klug
,
D. R.
, and
Durrant
,
J. R.
, 2001, “
Trap-Limited Recombination in Dye-Sensitized Nanocrystalline Metal Oxide Electrodes
,”
Phys. Rev. B
0163-1829,
63
(
20
), p.
205321
.
11.
Cao
,
F.
,
Oskam
,
G.
,
Meyer
,
G. J.
, and
Searson
,
P. C.
, 1996, “
Electron Transport in Porous Nanocrystalline TiO2 Photoelectrochemical Cells
,”
J. Phys. Chem.
0022-3654,
100
(
42
), pp.
17021
17027
.
12.
de Jongh
,
P. E.
, and
Vanmaekelbergh
,
D.
, 1996, “
Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles
,”
Phys. Rev. Lett.
0031-9007,
77
(
16
), pp.
3427
3430
.
13.
van de Lagemaat
,
J.
, and
Frank
,
A. J.
, 2001, “
Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies
,”
J. Phys. Chem. B
1089-5647,
105
(
45
), pp.
11194
11205
.
14.
Benkstein
,
K. D.
,
Kopidakis
,
N.
,
van de Lagemaat
,
J.
, and
Frank
,
A. J.
, 2003, “
Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells
,”
J. Phys. Chem. B
1089-5647,
107
(
31
), pp.
7759
7767
.
15.
Kopidakis
,
N.
,
Benkstein
,
K. D.
,
van de Lagemaat
,
J.
,
Frank
,
A. J.
,
Yuan
,
Q.
, and
Schiff
,
E. A.
, 2006, “
Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 Nanoparticle Films: Evidence Against Multiple Trapping in Exponential Conduction-Band Tails
,”
Phys. Rev. B
0163-1829,
73
(
4
), p.
045326
.
16.
Zhu
,
K.
,
Neale
,
N. R.
,
Miedaner
,
A.
, and
Frank
,
A. J.
, 2007, “
Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays
,”
Nano Lett.
1530-6984,
7
(
1
), pp.
69
74
.
17.
Jiu
,
J.
,
Isoda
,
S.
,
Wang
,
F.
, and
Adachi
,
M.
, 2006, “
Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film
,”
J. Phys. Chem. B
1089-5647,
110
(
5
), pp.
2087
2092
.
18.
Enache-Pommer
,
E.
,
Boercker
,
J. E.
, and
Aydil
,
E. S.
, 2007, “
Electron Transport and Recombination in Polycrystalline TiO2 Nanowire Dye-Sensitized Solar Cells
,”
Appl. Phys. Lett.
0003-6951,
91
(
12
), p.
123116
.
19.
Ohsaki
,
Y.
,
Masaki
,
N.
,
Kitamura
,
T.
,
Wada
,
Y.
,
Okamoto
,
T.
,
Sekino
,
T.
,
Niihara
,
K.
, and
Yanagida
,
S.
, 2005, “
Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization
,”
Phys. Chem. Chem. Phys.
1463-9076,
7
(
24
), pp.
4157
4163
.
20.
Watanabe
,
M.
,
Aritomo
,
H.
,
Yamaguchi
,
I.
,
Shinagawa
,
T.
,
Tamai
,
T.
,
Tasaka
,
A.
, and
Izaki
,
M.
, 2007, “
Selective Preparation of Zinc Oxide Nanostructures by Electrodeposition on the Templates of Surface-Functionalized Polymer Particles
,”
Chem. Lett.
0366-7022,
36
(
5
), pp.
680
681
.
21.
Izaki
,
M.
,
Watanabe
,
M.
,
Aritomo
,
H.
,
Yamaguchi
,
I.
,
Asahina
,
S.
,
Shinagawa
,
T.
,
Chigane
,
M.
,
Inaba
,
M.
, and
Tasaka
,
A.
, 2008, “
Zinc Oxide Nano-Cauliflower Array With Room Temperature Ultraviolet Light Emission
,”
Cryst. Growth Des.
1528-7483,
8
(
4
), pp.
1418
1421
.
22.
Adachi
,
M.
,
Murata
,
Y.
,
Okada
,
I.
, and
Yoshikawa
,
S.
, 2003, “
Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells
,”
J. Electrochem. Soc.
0013-4651,
150
(
8
), pp.
G488
G493
.
23.
Ngamsinlapasathian
,
S.
,
Sakulkhaemaruethai
,
S.
,
Pavasupree
,
S.
,
Kitiyanan
,
A.
,
Sreethawong
,
T.
,
Suzuki
,
Y.
, and
Yoshikawa
,
S.
, 2004, “
Highly Efficient Dye-Sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure
,”
J. Photochem. Photobiol., A
1010-6030,
164
(
1–3
), pp.
145
151
.
24.
Asagoe
,
K.
,
Suzuki
,
Y.
,
Ngamsinlapasathian
,
S.
and
Yoshikawa
,
S.
, 2007, “
TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells
,”
J. Phys.: Conf. Ser.
1742-6588,
61
(
1
), pp.
1112
1116
.
25.
Huynh
,
W. U.
,
Dittmer
,
J. J.
, and
Alivisatos
,
A. P.
, 2002, “
Hybrid Nanorod-Polymer Solar Cells
,”
Science
0036-8075,
295
(
5564
), pp.
2425
2427
.
26.
Law
,
M.
,
Greene
,
L. E.
,
Johnson
,
J. C.
,
Saykally
,
R.
, and
Yang
,
P.
, 2005, “
Nanowire Dye-Sensitized Solar Cells
,”
Nature Mater.
1476-1122,
4
(
6
), pp.
455
459
.
27.
Mor
,
G. K.
,
Shankar
,
K.
,
Paulose
,
M.
,
Varghese
,
O. K.
, and
Grimes
,
C. A.
, 2006, “
Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells
,”
Nano Lett.
1530-6984,
6
(
2
), pp.
215
218
.
28.
Mor
,
G. K.
,
Varghese
,
O. K.
,
Paulose
,
M.
,
Shankar
,
K.
, and
Grimes
,
C. A.
, 2006, “
A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications
,”
Sol. Energy Mater. Sol. Cells
0927-0248,
90
(
14
), pp.
2011
2075
.
29.
Tsakalakos
,
L.
,
Balch
,
J.
,
Fronheiser
,
J.
,
Shih
,
M. -Y.
,
LeBoeuf
,
S. F.
,
Pietrzykowski
,
M.
,
Codella
,
P. J.
,
Korevaar
,
B. A.
,
Sulima
,
O.
,
Rand
,
J.
,
Kumar
,
A. D.
, and
Rapol
,
U.
, 2007, “
Silicon Nanowire Solar Cells
,”
Appl. Phys. Lett.
0003-6951,
91
(
23
), pp.
233117
.
30.
Charoensirithavorn
,
P.
,
Ogomi
,
Y.
,
Sagawa
,
T.
,
Hayase
,
S.
, and
Yoshikawa
,
S.
, 2009, “
A Facile Route to TiO2 Nanotube Arrays for Dye-sensitized Solar Cells
,”
J. Cryst. Growth
0022-0248,
311
(
3
), pp.
757
759
.
31.
Yoshida
,
T.
,
Oekermann
,
T.
,
Okabe
,
K.
,
Schelettwein
,
D.
,
Funabiki
,
K.
, and
Minoura
,
H.
, 2002, “
Cathodic Electrodeposition of ZnO/EosinY Hybrid Thin Films From Dye Added Zinc Nitrate Bath and Their Photoelectrochemical Characterizations
,”
Electrochemistry (Tokyo, Jpn.)
1344-3542,
70
(
6
), pp.
470
487
.
32.
Govender
,
K.
,
Boyle
,
D. S.
,
Kenway
,
P. B.
, and
Brien
,
P. O.
, 2004, “
Understanding the Factors That Govern the Deposition and Morphology of Thin Films of ZnO From Aqueous Solution?
,”
J. Mater. Chem.
0959-9428,
14
(
16
), pp.
2575
2591
.
33.
Li
,
W. J.
,
Shi
,
E. W.
,
Zhong
,
W. Z.
, and
Yin
,
Z. W.
, 1999, “
Growth Mechanism and Growth Habit of Oxide Crystals
,”
J. Cryst. Growth
0022-0248,
203
(
1–2
), pp.
186
196
.
34.
Wang
,
Z.
,
Qian
,
X. -F.
,
Yin
,
J.
, and
Zhu
,
Z. -K.
, 2004, “
Aqueous Solution Fabrication of Large-Scale Arrayed Obelisk-Like Zinc Oxide Nanorods With High Efficiency
,”
J. Solid State Chem.
0022-4596,
177
(
6
), pp.
2144
2149
.
35.
Tauste
,
D. G.
,
Domenech
,
X.
,
Pastor
,
N. C.
, and
Ayllon
,
J. A.
, 2007, “
Characterization of Methylene Blue/TiO2 Hybrid Thin Films Prepared by the Liquid Phase Deposition (LPD) Method: Application for Fabrication of Light-Activated Colorimetric Oxygen Indicators
,”
J. Photochem. Photobiol., A
1010-6030,
187
(
1
), pp.
45
52
.
36.
Barbé
,
C. J.
,
Arendse
,
F.
,
Comte
,
P.
,
Jirousek
,
M.
,
Lenzmann
,
F.
,
Shklover
,
V.
, and
Grätzel
,
M.
, 1997, “
Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications
,”
J. Am. Ceram. Soc.
0002-7820,
80
(
12
), pp.
3157
3171
.
37.
Grätzel
,
M.
, 2005, “
Mesoscopic Solar Cells for Electricity and Hydrogen Production From Sunlight
,”
Chem. Lett.
0366-7022,
34
(
1
), pp.
8
13
.
38.
Menzies
,
D. B.
,
Dai
,
Q.
,
Bourgeois
,
L.
,
Caruso
,
R. A.
,
Cheng
,
Y. -B.
,
Simon
,
G. P.
, and
Spiccia
,
L.
, 2007, “
Modification of Mesoporous TiO2 Electrodes by Surface Treatment With Titanium(IV), Indium(III) and Zirconium(IV) Oxide Precursors: Preparation, Characterization and Photovoltaic Performance in Dye-Sensitized Nanocrystalline Solar Cells
,”
Nanotechnology
0957-4484,
18
(
12
), pp.
125608
.
39.
Park
,
N. -G.
,
Schlichthörl
,
G.
,
van de Lagemaat
,
J.
,
Cheong
,
H. M.
,
Mascarenhas
,
A.
, and
Frank
,
A. J.
, 1999, “
Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed From the Hydrolysis of TiCl4
,”
J. Phys. Chem. B
1089-5647,
103
(
17
), pp.
3308
3314
.
40.
Nazeeruddin
,
M. K.
,
Kay
,
A.
,
Rodicio
,
I.
,
Humphry-Baker
,
R.
,
Müller
,
E.
,
Liska
,
P.
,
Vlachopoulos
,
N.
, and
Grätzel
,
M.
, 1993, “
Conversion of Light to Electricity by cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes
,”
J. Am. Chem. Soc.
0002-7863,
115
(
14
), pp.
6382
6390
.
41.
Zeng
,
L. -Y.
,
Dai
,
S. -Y.
,
Wang
,
K. -J.
,
Pan
,
X.
,
Shi
,
C. -W.
, and
Guo
,
L.
, 2004, “
Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Tetrachloride
,”
Chin. Phys. Lett.
0256-307X,
21
(
9
), pp.
1835
1837
.
42.
O’Regan
,
B. C.
,
Durrant
,
J. R.
,
Sommeling
,
P. M.
, and
Bakker
,
N. J.
, 2007, “
Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit
,”
J. Phys. Chem. C
1932-7447,
111
(
3
), pp.
14001
14010
.
43.
Sommeling
,
P. M.
,
O'Regan
,
B. C.
,
Haswell
,
R. R.
,
Smit
,
H. J. P.
,
Bakker
,
N. J.
,
Smits
,
J. J. T.
,
Kroon
,
J. M.
, and
Van Roosmalen
,
J. A. M.
, 2006, “
Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells
,”
J. Phys. Chem. B
1089-5647,
110
(
39
), pp.
19191
19197
.
You do not currently have access to this content.