This article reports the fabrication of ordered arrays of ZnO nanorods and nanotubules by using a simple solution-based method and the application of these arrays as the working electrodes in dye-sensitized solar cells (DSCs) with an aim of offering superior electron transport conduits than in the conventional nanocrystalline nanoparticle films. The faster charge transport and lower recombination properties of one-dimensional (1D) nanostructure array electrodes as compared with those of the nanoparticle one observed and proved that such arrays of 1D nanostructure are the more promising electrode for DSCs in the future.
Issue Section:
Solar Energy R&D in Asia
1.
O’Regan
, B.
, and Grätzel
, M.
, 1991, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,” Nature (London)
0028-0836, 353
(6346
), pp. 737
–740
.2.
Hagfeldt
, A.
, and Grätzel
, M.
, 2000, “Molecular Photovoltaics
,” Acc. Chem. Res.
0001-4842, 33
(5
), pp. 269
–277
.3.
Kopidakis
, N.
, Schiff
, E. A.
, Park
, N. -G.
, van de Lagemaat
, J.
, and Frank
, A. J.
, 2000, “Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2
,” J. Phys. Chem. B
1089-5647, 104
(16
), pp. 3930
–3936
.4.
van de Lagemaat
, J.
, Park
, N. -G.
, and Frank
, A. J.
, 2000, “Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques
,” J. Phys. Chem. B
1089-5647, 104
(9
), pp. 2044
–2052
.5.
Solbrand
, A.
, Lindström
, A.
, Rensmo
, H.
, Hagfeldt
, A.
, and Lindquist
, S. E.
, 1997, “Electron Transport in the Nanostructured TiO2-Electrolyte System Studied With Time-Resolved Photocurrents
,” J. Phys. Chem. B
1089-5647, 101
(14
), pp. 2514
–2518
.6.
Tirosh
, S.
, Dittrich
, T.
, Ofir
, A.
, Grinis
, L.
, and Zaban
, A.
, 2006, “Influence of Ordering in Porous TiO2 Layers on Electron Diffusion
,” J. Phys. Chem. B
1089-5647, 110
(33
), pp. 16165
–16168
.7.
Savenije
, T. J.
, de Haas
, M. P.
, and Warman
, J. M.
, 1999, “The Yield and Mobility of Charge Carriers in Smooth and Nanoporous TiO2 Films
,” Z. Phys. Chem.
0942-9352, 212
(2
), pp. 201
–206
.8.
Schlichthörl
, G.
, Park
, N. G.
, and Frank
, A. J.
, 1999, “Estimation of the Charge-Collection Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells
,” Z. Phys. Chem.
0942-9352, 212
(1
), pp. 45
–50
.9.
Duffy
, N. W.
, Peter
, L. M.
, and Wijayantha
, K. G. U.
, 2000, “Characterisation of Electron Transport and Back Reaction in Dye-Sensitised Nanocrystalline Solar Cells by Small Amplitude Laser Pulse Excitation
,” Electrochem. Commun.
1388-2481, 2
(4
), pp. 262
–266
.10.
Nelson
, J.
, Haque
, S. A.
, Klug
, D. R.
, and Durrant
, J. R.
, 2001, “Trap-Limited Recombination in Dye-Sensitized Nanocrystalline Metal Oxide Electrodes
,” Phys. Rev. B
0163-1829, 63
(20
), p. 205321
.11.
Cao
, F.
, Oskam
, G.
, Meyer
, G. J.
, and Searson
, P. C.
, 1996, “Electron Transport in Porous Nanocrystalline TiO2 Photoelectrochemical Cells
,” J. Phys. Chem.
0022-3654, 100
(42
), pp. 17021
–17027
.12.
de Jongh
, P. E.
, and Vanmaekelbergh
, D.
, 1996, “Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles
,” Phys. Rev. Lett.
0031-9007, 77
(16
), pp. 3427
–3430
.13.
van de Lagemaat
, J.
, and Frank
, A. J.
, 2001, “Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies
,” J. Phys. Chem. B
1089-5647, 105
(45
), pp. 11194
–11205
.14.
Benkstein
, K. D.
, Kopidakis
, N.
, van de Lagemaat
, J.
, and Frank
, A. J.
, 2003, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells
,” J. Phys. Chem. B
1089-5647, 107
(31
), pp. 7759
–7767
.15.
Kopidakis
, N.
, Benkstein
, K. D.
, van de Lagemaat
, J.
, Frank
, A. J.
, Yuan
, Q.
, and Schiff
, E. A.
, 2006, “Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 Nanoparticle Films: Evidence Against Multiple Trapping in Exponential Conduction-Band Tails
,” Phys. Rev. B
0163-1829, 73
(4
), p. 045326
.16.
Zhu
, K.
, Neale
, N. R.
, Miedaner
, A.
, and Frank
, A. J.
, 2007, “Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays
,” Nano Lett.
1530-6984, 7
(1
), pp. 69
–74
.17.
Jiu
, J.
, Isoda
, S.
, Wang
, F.
, and Adachi
, M.
, 2006, “Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film
,” J. Phys. Chem. B
1089-5647, 110
(5
), pp. 2087
–2092
.18.
Enache-Pommer
, E.
, Boercker
, J. E.
, and Aydil
, E. S.
, 2007, “Electron Transport and Recombination in Polycrystalline TiO2 Nanowire Dye-Sensitized Solar Cells
,” Appl. Phys. Lett.
0003-6951, 91
(12
), p. 123116
.19.
Ohsaki
, Y.
, Masaki
, N.
, Kitamura
, T.
, Wada
, Y.
, Okamoto
, T.
, Sekino
, T.
, Niihara
, K.
, and Yanagida
, S.
, 2005, “Dye-Sensitized TiO2 Nanotube Solar Cells: Fabrication and Electronic Characterization
,” Phys. Chem. Chem. Phys.
1463-9076, 7
(24
), pp. 4157
–4163
.20.
Watanabe
, M.
, Aritomo
, H.
, Yamaguchi
, I.
, Shinagawa
, T.
, Tamai
, T.
, Tasaka
, A.
, and Izaki
, M.
, 2007, “Selective Preparation of Zinc Oxide Nanostructures by Electrodeposition on the Templates of Surface-Functionalized Polymer Particles
,” Chem. Lett.
0366-7022, 36
(5
), pp. 680
–681
.21.
Izaki
, M.
, Watanabe
, M.
, Aritomo
, H.
, Yamaguchi
, I.
, Asahina
, S.
, Shinagawa
, T.
, Chigane
, M.
, Inaba
, M.
, and Tasaka
, A.
, 2008, “Zinc Oxide Nano-Cauliflower Array With Room Temperature Ultraviolet Light Emission
,” Cryst. Growth Des.
1528-7483, 8
(4
), pp. 1418
–1421
.22.
Adachi
, M.
, Murata
, Y.
, Okada
, I.
, and Yoshikawa
, S.
, 2003, “Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells
,” J. Electrochem. Soc.
0013-4651, 150
(8
), pp. G488
–G493
.23.
Ngamsinlapasathian
, S.
, Sakulkhaemaruethai
, S.
, Pavasupree
, S.
, Kitiyanan
, A.
, Sreethawong
, T.
, Suzuki
, Y.
, and Yoshikawa
, S.
, 2004, “Highly Efficient Dye-Sensitized Solar Cell Using Nanocrystalline Titania Containing Nanotube Structure
,” J. Photochem. Photobiol., A
1010-6030, 164
(1–3
), pp. 145
–151
.24.
Asagoe
, K.
, Suzuki
, Y.
, Ngamsinlapasathian
, S.
and Yoshikawa
, S.
, 2007, “TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells
,” J. Phys.: Conf. Ser.
1742-6588, 61
(1
), pp. 1112
–1116
.25.
Huynh
, W. U.
, Dittmer
, J. J.
, and Alivisatos
, A. P.
, 2002, “Hybrid Nanorod-Polymer Solar Cells
,” Science
0036-8075, 295
(5564
), pp. 2425
–2427
.26.
Law
, M.
, Greene
, L. E.
, Johnson
, J. C.
, Saykally
, R.
, and Yang
, P.
, 2005, “Nanowire Dye-Sensitized Solar Cells
,” Nature Mater.
1476-1122, 4
(6
), pp. 455
–459
.27.
Mor
, G. K.
, Shankar
, K.
, Paulose
, M.
, Varghese
, O. K.
, and Grimes
, C. A.
, 2006, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells
,” Nano Lett.
1530-6984, 6
(2
), pp. 215
–218
.28.
Mor
, G. K.
, Varghese
, O. K.
, Paulose
, M.
, Shankar
, K.
, and Grimes
, C. A.
, 2006, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications
,” Sol. Energy Mater. Sol. Cells
0927-0248, 90
(14
), pp. 2011
–2075
.29.
Tsakalakos
, L.
, Balch
, J.
, Fronheiser
, J.
, Shih
, M. -Y.
, LeBoeuf
, S. F.
, Pietrzykowski
, M.
, Codella
, P. J.
, Korevaar
, B. A.
, Sulima
, O.
, Rand
, J.
, Kumar
, A. D.
, and Rapol
, U.
, 2007, “Silicon Nanowire Solar Cells
,” Appl. Phys. Lett.
0003-6951, 91
(23
), pp. 233117
.30.
Charoensirithavorn
, P.
, Ogomi
, Y.
, Sagawa
, T.
, Hayase
, S.
, and Yoshikawa
, S.
, 2009, “A Facile Route to TiO2 Nanotube Arrays for Dye-sensitized Solar Cells
,” J. Cryst. Growth
0022-0248, 311
(3
), pp. 757
–759
.31.
Yoshida
, T.
, Oekermann
, T.
, Okabe
, K.
, Schelettwein
, D.
, Funabiki
, K.
, and Minoura
, H.
, 2002, “Cathodic Electrodeposition of ZnO/EosinY Hybrid Thin Films From Dye Added Zinc Nitrate Bath and Their Photoelectrochemical Characterizations
,” Electrochemistry (Tokyo, Jpn.)
1344-3542, 70
(6
), pp. 470
–487
.32.
Govender
, K.
, Boyle
, D. S.
, Kenway
, P. B.
, and Brien
, P. O.
, 2004, “Understanding the Factors That Govern the Deposition and Morphology of Thin Films of ZnO From Aqueous Solution?
,” J. Mater. Chem.
0959-9428, 14
(16
), pp. 2575
–2591
.33.
Li
, W. J.
, Shi
, E. W.
, Zhong
, W. Z.
, and Yin
, Z. W.
, 1999, “Growth Mechanism and Growth Habit of Oxide Crystals
,” J. Cryst. Growth
0022-0248, 203
(1–2
), pp. 186
–196
.34.
Wang
, Z.
, Qian
, X. -F.
, Yin
, J.
, and Zhu
, Z. -K.
, 2004, “Aqueous Solution Fabrication of Large-Scale Arrayed Obelisk-Like Zinc Oxide Nanorods With High Efficiency
,” J. Solid State Chem.
0022-4596, 177
(6
), pp. 2144
–2149
.35.
Tauste
, D. G.
, Domenech
, X.
, Pastor
, N. C.
, and Ayllon
, J. A.
, 2007, “Characterization of Methylene Blue/TiO2 Hybrid Thin Films Prepared by the Liquid Phase Deposition (LPD) Method: Application for Fabrication of Light-Activated Colorimetric Oxygen Indicators
,” J. Photochem. Photobiol., A
1010-6030, 187
(1
), pp. 45
–52
.36.
Barbé
, C. J.
, Arendse
, F.
, Comte
, P.
, Jirousek
, M.
, Lenzmann
, F.
, Shklover
, V.
, and Grätzel
, M.
, 1997, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications
,” J. Am. Ceram. Soc.
0002-7820, 80
(12
), pp. 3157
–3171
.37.
Grätzel
, M.
, 2005, “Mesoscopic Solar Cells for Electricity and Hydrogen Production From Sunlight
,” Chem. Lett.
0366-7022, 34
(1
), pp. 8
–13
.38.
Menzies
, D. B.
, Dai
, Q.
, Bourgeois
, L.
, Caruso
, R. A.
, Cheng
, Y. -B.
, Simon
, G. P.
, and Spiccia
, L.
, 2007, “Modification of Mesoporous TiO2 Electrodes by Surface Treatment With Titanium(IV), Indium(III) and Zirconium(IV) Oxide Precursors: Preparation, Characterization and Photovoltaic Performance in Dye-Sensitized Nanocrystalline Solar Cells
,” Nanotechnology
0957-4484, 18
(12
), pp. 125608
.39.
Park
, N. -G.
, Schlichthörl
, G.
, van de Lagemaat
, J.
, Cheong
, H. M.
, Mascarenhas
, A.
, and Frank
, A. J.
, 1999, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed From the Hydrolysis of TiCl4
,” J. Phys. Chem. B
1089-5647, 103
(17
), pp. 3308
–3314
.40.
Nazeeruddin
, M. K.
, Kay
, A.
, Rodicio
, I.
, Humphry-Baker
, R.
, Müller
, E.
, Liska
, P.
, Vlachopoulos
, N.
, and Grätzel
, M.
, 1993, “Conversion of Light to Electricity by cis-X2bis(2,2′-Bipyridyl-4,4′-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes
,” J. Am. Chem. Soc.
0002-7863, 115
(14
), pp. 6382
–6390
.41.
Zeng
, L. -Y.
, Dai
, S. -Y.
, Wang
, K. -J.
, Pan
, X.
, Shi
, C. -W.
, and Guo
, L.
, 2004, “Mechanism of Enhanced Performance of Dye-Sensitized Solar Cell Based TiO2 Films Treated by Titanium Tetrachloride
,” Chin. Phys. Lett.
0256-307X, 21
(9
), pp. 1835
–1837
.42.
O’Regan
, B. C.
, Durrant
, J. R.
, Sommeling
, P. M.
, and Bakker
, N. J.
, 2007, “Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit
,” J. Phys. Chem. C
1932-7447, 111
(3
), pp. 14001
–14010
.43.
Sommeling
, P. M.
, O'Regan
, B. C.
, Haswell
, R. R.
, Smit
, H. J. P.
, Bakker
, N. J.
, Smits
, J. J. T.
, Kroon
, J. M.
, and Van Roosmalen
, J. A. M.
, 2006, “Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells
,” J. Phys. Chem. B
1089-5647, 110
(39
), pp. 19191
–19197
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.