A high-temperature lab-scale solar reactor prototype was designed, constructed and operated, allowing continuous ZnO thermal dissociation under controlled atmosphere at reduced pressure. It is based on a cavity-type rotating receiver absorbing solar radiation and composed of standard refractory materials. The reactant oxide powder is injected continuously inside the cavity and the produced particles (Zn) are recovered in a downstream ceramic filter. Dilution/quenching of the product gases with a neutral gas yields Zn nanoparticles by condensation. The solar thermal dissociation of ZnO was experimentally achieved, the reaction yields were quantified, and a first concept of solar reactor was qualified. The maximum yield of particles recovery in the filter was 21% and the dissociation yield was up to 87% (Zn weight content in the final powder) for a 5 NL/min neutral gas flow-rate (typical dilution ratio of 300).

1.
Funk
,
J. E.
, and
Reinstrom
,
R. M.
, 1966, “
Energy Requirements in the Production of Hydrogen From Water
,”
I&EC Process Des. Dev.
,
5
, pp.
336
342
.
2.
Shinnar
,
R.
,
Shapira
,
D.
, and
Zakai
,
S.
, 1981, “
Thermochemical and Hybrid Cycles for Hydrogen Production. A Differential Economic Comparison With Electrolysis
,”
I&EC Process Des. Dev.
,
20
, pp.
581
593
.
3.
Kasahara
,
S.
,
Kubo
,
S.
,
Hino
,
R.
,
Onuki
,
K.
,
Nomura
,
M.
, and
Nakao
,
S.
, 2007, “
Flowsheet Study of the Thermochemical Water-Splitting Iodine-Sulfur Process for Effective Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
489
496
.
4.
Marbán
,
G.
, and
Valdés-Solís
,
T.
, 2007, “
Towards the Hydrogen Economy?
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
1625
1637
.
5.
Salas-Morales
,
J. C.
, and
Evans
,
J. W.
, 1994, “
Further Studies of a Zinc-Air Cell Employing a Packed Bed Anode Part III: Improvements in Cell Design
,”
J. Appl. Electrochem.
0021-891X,
24
, pp.
858
862
.
6.
Agrawal
,
R.
,
Singh
,
N. R.
,
Ribeiro
,
F.
, and
Delgass
,
W. N.
, 2007, “
Sustainable Fuel for the Transportation Sector
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
, pp.
4828
4833
.
7.
Abraham
,
B. M.
, and
Schreiner
,
F.
, 1974, “
General Principles Underlying Chemical Cycles Which Thermally Decompose Water Into Elements
,”
Ind. Eng. Chem. Fundam.
0196-4313,
13
, pp.
305
310
.
8.
Ihara
,
S.
, 1978, “
Feasibility of Hydrogen Production by Direct Water-Splitting at High Temperature
,”
Int. J. Hydrogen Energy
0360-3199,
3
, pp.
287
296
.
9.
Kogan
,
A.
, 1998, “
Direct Solar Thermal Splitting of Water and On-Site Separation of the Products—II. Experimental Feasibility Study
,”
Int. J. Hydrogen Energy
0360-3199,
23
, pp.
95
98
.
10.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
11.
Abanades
,
S.
,
Charvin
,
P.
,
Flamant
,
G.
, and
Neveu
,
P.
, 2006, “
Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy
,”
Energy
0360-5442,
31
, pp.
2805
2822
.
12.
Tamaura
,
Y.
,
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Ehrensberger
,
K.
, 1995, “
Production of Solar Hydrogen by a Novel, 2-Step, Water-Splitting Thermochemical Cycle
,”
Energy
0360-5442,
20
, pp.
325
330
.
13.
Martin
,
R.
,
Neises
,
M.
,
Säck
,
J. P.
,
Rietbrock
,
P.
,
Monnerie
,
N.
,
Dersch
,
J.
,
Schmitz
,
M.
, and
Sattler
,
C.
, 2008, “
Operational Strategy of a Two-Step Thermochemical Process for Solar Hydrogen Production
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
4537
4545
.
14.
Bilgen
,
E.
,
Ducarroir
,
M.
,
Foex
,
M.
,
Sibieude
,
F.
, and
Trombe
,
F.
, 1977, “
Use of Solar Energy for Direct and Two-Step Water Decomposition Cycles
,”
Int. J. Hydrogen Energy
0360-3199,
2
, pp.
251
257
.
15.
Vishnevetsky
,
I.
, and
Epstein
,
M.
, 2007, “
Production of Hydrogen From Solar Zinc in Steam Atmosphere
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
2791
2802
.
16.
Goldstein
,
J.
,
Meitav
,
A.
, and
Lezion
,
R.
, 1993, “
Regenerating Slurries for Use in Zinc-Air Batteries
,” U.S. Patent 5,228,958, Electric Fuel Limited, Israel.
17.
Charvin
,
P.
,
Abanades
,
S.
,
Lemort
,
F.
, and
Flamant
,
G.
, 2008, “
Analysis of Solar Chemical Processes for Hydrogen Production From Water-Splitting Thermochemical Cycles
,”
Energy Convers. Manage.
0196-8904,
49
, pp.
1547
1556
.
18.
Levene
,
J. I.
,
Mann
,
M. K.
,
Margolis
,
R. M.
, and
Milbrandt
,
A.
, 2007, “
An Analysis of Hydrogen Production From Renewable Electricity Sources
,”
Sol. Energy
0038-092X,
81
, pp.
773
780
.
19.
Weidenkaff
,
A.
,
Reller
,
A. W.
,
Wokaun
,
A.
, and
Steinfeld
,
A.
, 2000, “
Thermogravimetric Analysis of the ZnO/Zn Water Splitting Cycle
,”
Thermochim. Acta
0040-6031,
359
, pp.
69
75
.
20.
Gstoehl
,
D.
,
Brambilla
,
A.
,
Schunk
,
L. O.
, and
Steinfeld
,
A.
, 2008, “
A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,”
J. Mater. Sci.
0022-2461,
43
, pp.
4729
4736
.
21.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
22.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R.
, 2006, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
0038-092X,
80
, pp.
500
511
.
23.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2008, “
A Solar Receiver-Reactor for the Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
130
, p.
021009
.
24.
Schunk
,
L. O.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
, 2009, “
Heat Transfer Model of a Solar Receiver-Reactor for the Thermal Dissociation of ZnO
,”
Chem. Eng. J.
0300-9467,
150
, pp.
502
508
.
25.
Schunk
,
L. O.
,
Lipinski
,
W.
, and
Steinfeld
,
A.
, 2009, “
Ablative Heat Transfer in a Shrinking Packed-Bed of ZnO Undergoing Solar Thermal Dissociation
,”
AIChE J.
0001-1541,
55
, pp.
1659
1666
.
26.
Charvin
,
P.
,
Abanades
,
S.
,
Lemort
,
F.
, and
Flamant
,
G.
, 2008, “
Experimental Study of SnO2/SnO/Sn Thermochemical Systems for Solar Production of Hydrogen
,”
AIChE J.
0001-1541,
54
, pp.
2759
2767
.
27.
Abanades
,
S.
,
Charvin
,
P.
,
Neveu
,
P.
,
Lemort
,
F.
, and
Flamant
,
G.
, 2008, “
Dynamic Modeling of a Volumetric Solar Reactor for Volatile Metal Oxide Reduction
,”
Chem. Eng. Res. Des.
0263-8762,
86
, pp.
1212
1222
.
28.
Abanades
,
S.
,
Charvin
,
P.
, and
Flamant
,
G.
, 2007, “
Design and Simulation of a Solar Chemical Reactor for the Thermal Reduction of Metal Oxides: Case Study of Zinc Oxide Dissociation
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
6323
6333
.
29.
Jenkins
,
R.
, and
Snyder
,
R.
, 1996,
Introduction to X-Ray Powder Diffractometry
,
Wiley
,
New York
.
30.
Abanades
,
S.
, and
Flamant
,
G.
, 2005, “
Production of Hydrogen by Thermal Methane Splitting in a Nozzle-Type Laboratory-Scale Solar Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
843
853
.
31.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1587
1599
.
32.
Perkins
,
C.
,
Lichty
,
P.
, and
Weimer
,
A. W.
, 2007, “
Determination of Aerosol Kinetics of Thermal ZnO Dissociation by Thermogravimetry
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5952
5962
.
33.
Kouam
,
J.
,
Ait-Ahcene
,
T.
,
Plaiasu
,
A. G.
,
Abrudeanu
,
M.
,
Motoc
,
A.
,
Beche
,
E.
, and
Monty
,
C.
, 2008, “
Characterization and Properties of ZnO Based Nanopowders Prepared by Solar Physical Vapor Deposition (SPVD)
,”
Sol. Energy
0038-092X,
82
, pp.
226
238
.
34.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A. K.
,
Auer
,
P. O.
,
Eichler
,
B.
, and
Reller
,
A.
, 1999, “
Direct Solar Thermal Dissociation of Zinc Oxide: Condensation and Crystallization of Zinc in the Presence of Oxygen
,”
Sol. Energy
0038-092X,
65
, pp.
59
69
.
You do not currently have access to this content.