The synthesis and hydrolysis of zinc nanoparticles are carried out in a tubular reactor. A key component of the reactor is a coaxial jet quench device. Three coaxial and multi-inlet confined jets mix Zn(g), steam, and argon to produce and hydrolyze zinc nanoparticles. The performance of the quench device is assessed with computational fluid dynamics modeling and measurements of hydrogen conversion and particle size and composition. Numerical data elucidate the impact of varying jet flow rates on temperature and velocity distributions within the reactor. Experiments produce hydrogen conversions of 61–79%. Particle deposition on sections of the reactor surface above 650 K favors hydrolysis. Residence time for in-flight particles is less than 1 s and these particles are partially hydrolyzed.

1.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
2.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
, pp.
603
615
.
3.
Palumbo
,
R.
,
Lédé
,
J.
,
Boutin
,
O.
,
Elorza Ricart
,
E.
,
Steinfeld
,
A.
,
Moeller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a Single Step High Temperature Solar Decomposition Process
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2503
2518
.
4.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
5.
Möller
,
S.
, and
Palumbo
,
R.
, 2001, “
The Development of a Solar Chemical Reactor for the Direct Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
83
90
.
6.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2007, “
A Rotary Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
Proceedings of the ASME Energy Sustainability Conference
, Long Beach, CA, Jun. 27–30, Paper No. 36078.
7.
Perkins
,
C.
,
Lichty
,
P.
, and
Weimer
,
A. W.
, 2007, “
Determination of Aerosol Kinetics of Thermal ZnO Dissociation by Thermogravimetry
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5952
5962
.
8.
Wegner
,
K.
,
Ly
,
H. C.
,
Weiss
,
R. J.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
In Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO/Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
55
61
.
9.
Weiss
,
R. J.
,
Ly
,
H. C.
,
Wegner
,
K.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2005, “
H2 Production by Zn Hydrolysis in a Hot-Wall Aerosol Reactor
,”
AIChE J.
0001-1541,
51
, pp.
1966
1970
.
10.
Abu Hamed
,
T.
,
Davidson
,
J. H.
,
Stolzenburg
,
M.
, 2008, “
Hydrogen Production Via Hydrolysis of Zn in a Hot Wall Flow Reactor
,”
J. Sol. Energy Eng.
0199-6231,
130
(
4
), p.
041010
.
11.
Abu Hamed
,
T.
,
Davidson
,
J. H.
, and
Haltiwanger
,
J. F.
, 2007, “
Hydrogen Production Via Hydrolysis of Zinc Nanoparticles
,”
Proceedings of the AICHE Annual Meeting
, Salt Lake City, UT, Nov. 4–9.
12.
Ernst
,
F. O.
, 2007, “
Cosynthesis of H2
and Nanocrystalline ZnO Particles by Zn Aerosol Formation and In-Situ Hydrolysis,” Ph.D. thesis, ETH-Zurich, Zurich, Switzerland.
13.
Ernst
,
F. O.
,
Tricoli
,
A.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
, 2006, “
Co-Synthesis of H2 and ZnO by In-Situ Zn Aerosol Formation and Hydrolysis
,”
AIChE J.
0001-1541,
52
(
9
), pp.
3297
3303
.
14.
Melchior
,
T.
,
Piatkowski
,
N.
, and
Steinfeld
,
A.
, 2009, “
H2 Production by Steam-Quenching of Zn Vapor in a Hot-Wall Aerosol Flow Reactor
,”
Chem. Eng. Sci.
0009-2509,
64
, pp.
1095
1101
.
15.
Funke
,
H. H.
,
Diaz
,
H.
,
Liang
,
X.
,
Carney
,
C. S.
,
Weimer
,
A. W.
, and
Li
,
P.
, 2008, “
Hydrogen Generation by Hydrolysis of Zinc Powder Aerosol
,”
Int. J. Hydrogen Energy
0360-3199,
33
(
4
), pp.
1127
1134
.
16.
Ernst
,
F. O.
,
Steinfeld
,
A.
, and
Pratsinis
,
S.
, 2009, “
Hydrolysis Rate of Submicron Zn Particles for Solar H2 Synthesis
,”
Int. J. Hydrogen Energy
0360-3199,
34
, pp.
1166
1175
.
17.
Panda
,
S.
, and
Pratsinis
,
S. E.
, 1995, “
Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aerosol Flow Reactor
,”
Nanostruct. Mater.
0965-9773,
5
, pp.
755
767
.
18.
Woodfield
,
P. L.
, 2003, “
Numerical Study of Enhancement of Laminar Flow Mixing Using Multiple Confined Jets in a Micro-Can Combustor
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2655
2663
.
19.
Jahnke
,
S.
,
Kornev
,
N.
,
Tkatchenko
,
I.
,
Hassel
,
E.
, and
Leder
,
A.
, 2005, “
Numerical Study of Influence of Different Parameters on Mixing in a Coaxial Jet Mixer Using LES
,”
Heat Mass Transfer
0947-7411,
41
, pp.
471
481
.
20.
2005, FLUENT 6.2. User’s Guide, Lebanon, NH.
21.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
22.
Rabinovich
,
V. A.
, 1988,
Thermophysical Properties of Neon, Argon, Krypton, and Xenon
,
Hemisphere
,
New York
.
23.
Figliola
,
R. S.
, and
Beasley
,
D. E.
, 2006,
Theory and Design for Mechanical Measurements
, 4th ed.,
Wiley
,
New York
.
24.
Yaws
,
C. L.
, 1999,
Chemical Properties Handbook
,
McGraw-Hill
,
New York
.
25.
Müller
,
R.
, and
Steinfeld
,
A.
, 2008, “
H2O-Splitting Thermochemical Cycle Based on ZnO/Zn-Redox: Quenching the Effluents From the ZnO Dissociation
,”
Chem. Eng. Sci.
0009-2509,
63
(
1
), pp.
217
227
.
26.
Haltiwanger
,
J. F.
,
Venstrom
,
L. J.
, and
Davidson
,
J. H.
, 2009, “
A Discussion of the Measurement of ZnO Conversion in Aerosol Reactors
,” ASME Paper No. ES2009-90006.
You do not currently have access to this content.